Browse > Article
http://dx.doi.org/10.9713/kcer.2019.57.3.425

Development of Micro-Tubular Perovskite Cathode Catalyst with Bi-Functionality on ORR/OER for Metal-Air Battery Applications  

Jeon, Yukwon (School of chemistry, University of St Andrews)
Kwon, Ohchan (Department of Chemical and Biomolecular Engineering, Yonsei University)
Ji, Yunseong (Department of Chemical and Biomolecular Engineering, Yonsei University)
Jeon, Ok Sung (Department of Chemical and Biomolecular Engineering, Yonsei University)
Lee, Chanmin (Research Institute of Sustainable Manufacturing System, Intelligent Sustainable Materials R&D Group, Korea Institute of Industrial Technology (KITECH))
Shul, Yong-Gun (Department of Chemical and Biomolecular Engineering, Yonsei University)
Publication Information
Korean Chemical Engineering Research / v.57, no.3, 2019 , pp. 425-431 More about this Journal
Abstract
As rechargeable metal-air batteries will be ideal energy storage devices in the future, an active cathode electrocatalyst is required with bi-functionality on both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) during discharge and charge, respectively. Here, a class of perovskite cathode catalyst with a micro-tubular structure has been developed by controlling bi-functionality from different Ru and Ni dopant ratios. A micro-tubular structure is achieved by the activated carbon fiber (ACF) templating method, which provides uniform size and shape. At the perovskite formula of $LaCrO_3$, the dual dopant system is successfully synthesized with a perfect incorporation into the single perovskite structure. The chemical oxidation states for each Ni and Ru also confirm the partial substitution to B-site of Cr without any changes in the major perovskite structure. From the electrochemical measurements, the micro-tubular feature reveals much more efficient catalytic activity on ORR and OER, comparing to the grain catalyst with same perovskite composition. By changing the Ru and Ni ratio, the $LaCr_{0.8}Ru_{0.1}Ni_{0.1}O_3$ micro-tubular catalyst exhibits great bi-functionality, especially on ORR, with low metal loading, which is comparable to the commercial catalyst of Pt and Ir. This advanced catalytic property on the micro-tubular structure and Ru/Ni synergy effect at the perovskite material may provide a new direction for the next-generation cathode catalyst in metal-air battery system.
Keywords
Metal-air battery; Cathode catalyst; Perovskite; Micro-tubular; Bi-functionality;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Mainar, A. R., Iruin, E., Colmenares, L. C., Kvasha, A., Meatza, I., Bengoechea, M., Leonet, O., Boyano, I., Zhang, Z. and Blazquez, J. A., "An Overview of Progress in Electrolytes for Secondary Zinc-Air Batteries and Other Storage Systems Based on Zinc," J. Energy Storage, 15, 304-328(2018).   DOI
2 Balaish, M., Kraytsberg, A. and Ein-Eli, Y., "A Critical Review on Lithium-Air Battery Electrolytes," Phys. Chem. Chem. Phys., 16, 2801-2822(2014).   DOI
3 Gelman, D., Shvartsev, B. and Ein-Eli, Y., "Aluminum-Air Battery Based on an Ionic Liquid Electrolyte," J. Mater. Chem. A, 2, 20237-20242(2014).   DOI
4 Wang, Z.-L., Xu, D., Xu, J.-J. and Zhang, X.-B., "Oxygen Electrocatalysts in Metal-Air Batteries: from Aqueous to Nonaqueous Electrolytes," Chem. Soc. Rev., 43, 7746-7786(2014).   DOI
5 Li, Y., Gong, M., Liang, Y., Feng, J., Kim, J.-E., Wang, H., Hong, G., Zhang, B. and Dai, H., "Advanced Zinc-Air Batteries Based on High-Performance Hybrid Electrocatalysts," Nat. Comm., 4, 1805(2013).   DOI
6 Chen, Y., Ji, S., Zhao, S., Chen, W., Dong, J. and Cheong, W.-C., et al., "Enhanced Oxygen Reduction with Single-atomic-site Iron Catalysts for a Zinc-Air Battery And Hydrogen-Air Fuel Cell," Nat. Comm., 9, 5422(2018).   DOI
7 Chen, Z., Yu, A., Higgins, D., Li, H., Wang, H. and Chen, Z., "Highly Active and Durable Core-Corona Structured Bifunctional Catalyst for Rechargeable Metal-Air Battery Application," Nano Lett., 12, 1946-1952(2012).   DOI
8 Jung, K.-N., Hwang, S. M., Park, M.-S., Kim, K. J., Kim, J.-G., Dou, S. X., Kim, J. H. and Lee, J.-W., "One-dimensional Manganese- Cobalt Oxide Nanofibres As Bi-Functional Cathode Catalysts For Rechargeable Metal-Air Batteries," Sci. Rep., 5, 7665 (2014).   DOI
9 Miao, H., Wang, Z., Wang, Q., Sun, S., Xue, Y., Wang, F., Zhao, J., Liu, Z. and Yuan, J., "A New Family of Mn-Based Perovskite $(La_{1-x}Y_{x}MnO_{3})$ with Improved Oxygen Electrocatalytic Activity for Metal-air Batteries," Energy, 154, 561-570(2018).   DOI
10 Li, Y., Xu, H., Chien, P. H., Wu, N., Xin, S., Xue, L., Park, K., Hu, Y. Y. and Goodenough, J. B., "A Perovskite Electrolyte That Is Stable in Moist Air for Lithium-Ion Batteries," Angew. Chem., Int. Ed., 57, 8587-8591(2018).   DOI
11 Anderson, H. U., Kuo, J. H. and Sparlin, D. M., "Review of Defect Chemistry of $LaMnO_3$ and $LaCrO_3$," Proceedings of the Electrochemical Society, PV 1989-19, 3-14(1989).
12 Pena, M. A. and Fierro, J. L., "Chemical Structures and Performance of Perovskite Oxides," Chem. Rev., 101, 1981-2017(2001).   DOI
13 Voorhoeve, R. J. H., Johnson, D. W., Remeika, J. P. and Gallagher, P. K., "Perovskite Oxides: Materials Science in Catalysis," Science, 4, 827-833(1977).
14 Karatzas, X., Jansson, K., González, A., Dawody, J., Svensson, A. and Pettersson, L., "Zone-coated Rh-based Monolithic Catalyst for Autothermal Reforming of Diesel," Appl. Catal. B-Environ., 101, 226-238(2011).   DOI
15 Chervin, C. N., Long, J. W., Brandel, N. L., Wallace, J. M., Kuck, N. W. and Roliso, D. R., "Redesigning Air Cathodes for Metalair Batteries Using MnOx-functionalized Carbon Nanofoam Architectures," J. Power Sources, 207, 191-198(2012).   DOI
16 Jeon, Y., Park, D. H., Park, J. I., Yoon, S. H., Mochida, I., Choy, J. H. and Shul, Y. G., "Hollow Fibers Networked with Perovskite Nanoparticles for $H_2$ Production from Heavy Oil," Sci. Rep., 3, 2902(2013).   DOI
17 Sunarso, J., Torriero, A. A. J., Zhou, W., Howlett, P. C. and Forsyth, M., "Oxygen Reduction Reaction Activity of La-Based Perovskite Oxides in Alkaline Medium: A Thin-Film Rotating Ring-Disk Electrode Study," J. Phys. Chem. C, 116, 5827(2012).   DOI
18 Jeon, Y., Lee, C., Rhee, J., Lee, G., Myung, J. H., Park, M., Park, J. I., Einaga, H. and Shul, Y. G., "Autothermal Reforming of Heavy-hydrocarbon Fuels by Morphology Controlled Perovskite Catalysts Using Carbon Templates," Fuel 187, 446-456(2017).   DOI
19 Jeon, Y., Myung, J.-H., Hyun, S.-H., Shul, Y.-G. and Irvine, J. T. S., "Corn-cob Like Nanofibres as Cathode Catalysts for an Effective Microstructure Design in Solid Oxide Fuel Cells," J. Mater. Chem. A, 5, 3966-3973(2017).   DOI
20 Jeon, Y., Ji, Y., Cho, Y.I., Lee, C., Park, D.-H. and Shul, Y.-G., "Oxide-Carbon Nanofibrous Composite Support for a Highly Active and Stable Polymer Electrolyte Membrane Fuel-Cell Catalyst," ACS Nano, 12, 6819-6829(2018).   DOI
21 Cazaux, J., "Mechanisms of Charging in Electron Spectroscopy," J. Electron Spectrosc. Relat. Phenom., 105, 155(1999).   DOI
22 Palina, N., Wang, L., Dash, S., Yu, X., Breese, M. B. H., Wang, J. and Rusydi, A., "Investigation of the Metal-insulator Transition in $NdNiO_3$ Films by Site-selective X-ray Absorption Spectroscopy," Nanoscale, 9, 6094-6102(2017).   DOI
23 Gilbert, B., Andres, R., Perfetti, P., Margaritondo, G., Rempfer, G. and de Stasio, G., "Charging Phenomena in PEEM Imaging and Spectroscopy," Ultramicroscopy, 83, 129-39(2000).   DOI
24 Harano, T., Shibata, G., Ishigami, K., Takashashi, Y., Verma, V. K., Singh, V. R., et al., "Role of Doped Ru in Coercivity-enhanced $La_{0.6}Sr_{0.4}MnO_{3}$ Thin Film Studied by X-ray Magnetic Circular Dichroism," Appl. Phys. Lett., 102, 222404(2013).   DOI
25 Li, Y., Gong, M., Liang, Y., Feng, J., Kim, J., Wang, H., Hong, G., Zhang, B. and Dai, H., "Advanced Zinc-air Batteries Based on High-performance Hybrid Electrocatalysts," Nat. Comm., 4, 1805(2013).   DOI
26 Blurton, K. F. and Sammells, A. F., "Metal/air Batteries: Their Status and Potential - a Review," J. Power Sources, 4, 263-279 (1979).   DOI
27 Zhang, X., Wang, X.-G., Xie, Z. and Zhou, Z., "Recent Progress in Rechargeable Alkali Metal-air Batteries," Green Energy & Environment, 1, 4-17(2016).   DOI
28 Li, Y. and Lu, J., "Metal-air Batteries: Will They Be the Future Electrochemical Energy Storage Device of Choice," ACS Energy Lett., 2(6), 1370-1377(2017).   DOI
29 Wang, Z.-L., Xu, D., Xu, J.-J. and Zhang, X.-B., "Oxygen Electrocatalysts in Metal-Air Batteries: from Aqueous to Nonaqueous Electrolytes," Chem. Soc. Rev., 43, 7746-7786(2014).   DOI
30 Cheng, F. and Chen, J., "Metal-air Batteries: From Oxygen Reduction Electrochemistry to Cathode Catalysts," Chem. Soc. Rev., 41, 2172-2192(2012).   DOI
31 Kwon, O., Hwang, H. J., Ji, Y., Jeon, O. S., Kim, J. P., Lee, C. and Shul, Y. G., "Transparent Bendable Secondary Zinc-Air Batteries by Controlled Void Ionic Separators," Sci. Rep., 9, 3175(2019).   DOI
32 Grande, L., Paillard, E., Hassoun, J., Park, J. B., Lee, Y. J., et al., "The Lithium/Air Battery: Still an Emerging System or a Practical Reality?," Adv. Mater., 27, 784-800(2015).   DOI
33 Jung, H.-G., Hassoun, J., Park, J.-B., Sun, Y.-K. and Scrosati, B., "An Improved High-performance Lithium-Air Battery," Nat. Chem., 4, 579-585(2012).   DOI
34 Lee, J. S., Kim, S. T., Cao, R., Choi, N. S., Liu, M., et al., "Metal-Air Batteries with High Energy Density: Li-Air Versus Zn-Air," Adv. Energ. Mater., 1, 34-50(2012).   DOI
35 Masuda, Y., Hosokawa, S. and Inoue, M., "Combustion Activities of the Ru Catalysts Supported on Hexagonal $YbFeO_3$," J. Ceram. Soc. Jpn., 119, 850-854(2011).   DOI
36 Caramia, V. and Bozzini, B., "Materials Science Aspects of Zinc-Air Batteries: a Review," Materials for Renewable and Sustainable Energy, 3, 28(2014).   DOI
37 Hwang, H. J., Chi, W. S., Kwon, O., Lee, J. G., Kim, J. H. and Shul, Y.-G., "Selective Ion Transporting Polymerized Ionic Liquid Membrane Separator for Enhancing Cycle Stability and Durability in Secondary Zinc-Air Battery Systems," ACS Appl. Mater. Interfaces, 8(39), 26298-26308(2016).   DOI
38 Liu, Y., Sun, Q., Li, W., Adair, K. R., Li, J. and Sun, X., "A Comprehensive Review on Recent Progress in Aluminum-Air Batteries," Green Energy & Environment, 2, 246-277(2017).   DOI
39 Liu, Q., Chang, Z., Li, Z. and Zhang, X., "Flexible Metal-Air Batteries: Progress, Challenges, and Perspectives," Small Methods, 2, 1700231(2018).   DOI
40 Zhang, T. and Zhou, H., "A Reversible Long-Life Lithium-Air Battery in Ambient Air," Nat. Comm., 4, 1817(2013).   DOI