DOI QR코드

DOI QR Code

Fabrication and Characterization of Spherical Carbon-Coated Li3V2(PO4)3 Cathode Material by Hydrothermal Method with Reducing Agent

  • Moon, Jung-In (Department of Materials Engineering, Graduate School of PaiChai University) ;
  • Song, Jeong-Hwan (Department of Materials Science and Engineering, PaiChai University)
  • Received : 2019.07.19
  • Accepted : 2019.08.27
  • Published : 2019.09.27

Abstract

Spherical $Li_3V_2(PO_4)_3$ (LVP) and carbon-coated LVP with a monoclinic phase for the cathode materials are synthesized by a hydrothermal method using $N_2H_4$ as the reducing agent and saccharose as the carbon source. The results show that single phase monoclinic LVP without impurity phases such as $LiV(P_2O_7)$, $Li(VO)(PO_4)$ and $Li_3(PO_4)$ can be obtained after calcination at $800^{\circ}C$ for 4 h. SEM and TEM images show that the particle sizes are $0.5{\sim}2{\mu}m$ and the thickness of the amorphous carbon layer is approximately 3~4 nm. CV curves for the test cell are recorded in the potential ranges of 3.0~4.3 V and 3.0~4.8 V at a scan rate of $0.01mV\;s^{-1}$ and at room temperature. At potentials between 3.0 and 4.8 V, the third $Li^+$ ions from the carbon-coated LVP can be completely extracted, at voltages close to 4.51 V. The carbon-coated LVP exhibits an initial specific discharge capacity of $118mAh\;g^{-1}$ in the voltage region of 3.0 to 4.3 V at a current rate of 0.2 C. The results indicate that the reducing agent and carbon source can affect the crystal structure and electrochemical properties of the cathode materials.

Keywords

References

  1. D. Guyomard and J.M. Tarascon, J. Electrochem. Soc., 139, 937 (1992). https://doi.org/10.1149/1.2069372
  2. C. D. W. Jones, E. Rossen and J. R. Dhan, Solid State Ionics, 68, 65 (1994). https://doi.org/10.1016/0167-2738(94)90235-6
  3. H. Y. Xu, S. Xie, N. Ding, B. L. Liu, Y. Shang and C. H. Chen, Electrochim. Acta, 51, 4352 (2006). https://doi.org/10.1016/j.electacta.2005.12.014
  4. K. Ozawa, Solid State Ionics, 69, 212 (1994). https://doi.org/10.1016/0167-2738(94)90411-1
  5. J. Gaubicher, C. Wurm, G. Goward, C. Masquelier and L. Nazar, Chem. Mater., 12, 3240 (2000). https://doi.org/10.1021/cm000345g
  6. S. C. Yin, H. Grondey, P. Strobel, H. Huang and L. F. Nazar, J. Am. Chem. Soc., 125, 326 (2003). https://doi.org/10.1021/ja028973h
  7. S. C. Yin, H. Grondey, P. Strobel, M. Anne and L. F. Nazar, J. Am. Chem. Soc., 125, 10402 (2003). https://doi.org/10.1021/ja034565h
  8. D. Morgan, G. Ceder, M. Y. Saidi, J. Barker, J. Swoyer and H. Huang and G. Adamson, Chem. Mater., 14, 4684 (2002). https://doi.org/10.1021/cm020348o
  9. M. Y. Saidi, J. Barker, H. Huang, J. L. Swoyer and G. Adamson, J. Power Sources, 119-121, 266 (2003). https://doi.org/10.1016/S0378-7753(03)00245-3
  10. Q. Kuang, Y. M. Zhao, X. N. An, J. M. Liu, Y. Z. Dong and L. Chen, Electrochim. Acta, 55, 1575 (2010). https://doi.org/10.1016/j.electacta.2009.10.028
  11. J. S. Huang, L. Yang, K. Y. Liu and Y. F. Tang, J. Power Sources, 195, 5013 (2010). https://doi.org/10.1016/j.jpowsour.2010.02.009
  12. C. Deng, S. Zhang, S. Y. Yang, Y. Gao, B. Wu, L. Ma, B. L. Fu, Q. Wu and F. L. Liu, J. Phys. Chem. C, 115, 15048 (2011). https://doi.org/10.1021/jp201686g
  13. Yu. G. Mateyshina and N. F. Uvarov, J. Power Sources, 196, 1494 (2011). https://doi.org/10.1016/j.jpowsour.2010.08.078
  14. M. M. Ren, Z. Zhou, Y. Z. Li, X. P. Gao and J. Yan, J. Power Sources, 162, 1357 (2006). https://doi.org/10.1016/j.jpowsour.2006.08.008
  15. D. Ai, K. Liu, Z. Lu, M. Zou, D. Zeng and J. Ma, Electrochim. Acta, 56, 2823 (2011). https://doi.org/10.1016/j.electacta.2010.12.063
  16. H. Huang, S. C. Yin, T. Kerr, N. Taylor and L. F. Nazar, Adv. Mater., 14, 1525 (2002). https://doi.org/10.1002/1521-4095(20021104)14:21<1525::AID-ADMA1525>3.0.CO;2-3
  17. Q. Q. Chen, J. M. Wang, Z. Tang, W. C. He, H. B. Shao and J. Q. Zhang, Electrochim. Acta, 52, 5251 (2007). https://doi.org/10.1016/j.electacta.2007.02.039
  18. A. P. Tang, X. Y. Wang and Z. M. Liu, Mater. Lett., 62, 1646 (2008). https://doi.org/10.1016/j.matlet.2007.09.064
  19. X. C. Zhou, Y. M. Liu and Y. L. Guo, Solid State Commun., 146, 261 (2008). https://doi.org/10.1016/j.ssc.2008.02.015
  20. M. M. Ren, Z. Zhou, X. P. Gao, W. X. Peng and J. P. Wei, J. Phys. Chem. C, 112, 5689 (2008). https://doi.org/10.1021/jp800040s
  21. X. J. Zhu, Y. X. Liu, L. M. Geng, L. B. Chen, H. X. Liu and M. H. Cao, Solid State Ionics, 179, 1679 (2008). https://doi.org/10.1016/j.ssi.2007.11.025
  22. X. J. Zhu, Y. X. Liu, L. M. Geng and L. B. Chen, J. Power Sources, 184, 578 (2008). https://doi.org/10.1016/j.jpowsour.2008.01.007
  23. C. Sun, S. Rajasekhara, Y. Dong and J. B. Goodenough, ACS Appl. Mater. Interfaces, 3, 3772 (2011). https://doi.org/10.1021/am200987y
  24. Z. Chen, C. Dai, G. Wu, M. Nelson, X. Hu, R. Zhang, J. Liu and J. Xia, Electrochim. Acta, 55, 8595 (2010). https://doi.org/10.1016/j.electacta.2010.07.068
  25. J. S. Huang, L. Yang and K. Y. Liu, Mater. Lett., 66, 196 (2012). https://doi.org/10.1016/j.matlet.2011.08.097