DOI QR코드

DOI QR Code

Preparation of CoFe2O4 Nanoparticle Decorated on Electrospun Carbon Nanofiber Composite Electrodes for Supercapacitors

코발트 페라이트 나노입자/탄소 나노섬유 복합전극 제조 및 슈퍼커패시터 특성평가

  • Hwang, Hyewon (Department of Urban, Energy, and Environmental Engineering, Chungbuk National University) ;
  • Yuk, Seoyeon (Department of Advanced Materials Engineering, Chungbuk National University) ;
  • Jung, Minsik (Department of Urban, Energy, and Environmental Engineering, Chungbuk National University) ;
  • Lee, Dongju (Department of Urban, Energy, and Environmental Engineering, Chungbuk National University)
  • 황혜원 (충북대학교 도시.에너지.환경 융합학부) ;
  • 육서연 (충북대학교 신소재공학과) ;
  • 정민식 (충북대학교 도시.에너지.환경 융합학부) ;
  • 이동주 (충북대학교 도시.에너지.환경 융합학부)
  • Received : 2021.12.07
  • Accepted : 2021.12.24
  • Published : 2021.12.28

Abstract

Energy storage systems should address issues such as power fluctuations and rapid charge-discharge; to meet this requirement, CoFe2O4 (CFO) spinel nanoparticles with a suitable electrical conductivity and various redox states are synthesized and used as electrode materials for supercapacitors. In particular, CFO electrodes combined with carbon nanofibers (CNFs) can provide long-term cycling stability by fabricating binder-free three-dimensional electrodes. In this study, CFO-decorated CNFs are prepared by electrospinning and a low-cost hydrothermal method. The effects of heat treatment, such as the activation of CNFs (ACNFs) and calcination of CFO-decorated CNFs (C-CFO/ACNFs), are investigated. The C-CFO/ACNF electrode exhibits a high specific capacitance of 142.9 F/g at a scan rate of 5 mV/s and superior rate capability of 77.6% capacitance retention at a high scan rate of 500 mV/s. This electrode also achieves the lowest charge transfer resistance of 0.0063 Ω and excellent cycling stability (93.5% retention after 5,000 cycles) because of the improved ion conductivity by pathway formation and structural stability. The results of our work are expected to open a new route for manufacturing hybrid capacitor electrodes containing the C-CFO/ACNF electrode that can be easily prepared with a low-cost and simple process with enhanced electrochemical performance.

Keywords

Acknowledgement

이 논문은 충북대학교 국립대학육성사업(2020)지원을 받아 작성되었음.

References

  1. A. Gonzalez, E. Goikolea, J. A. Barrena and R. Mysyk: Renew. Sust. Energ. Rev., 58 (2016) 1189. https://doi.org/10.1016/j.rser.2015.12.249
  2. T. Gu and B. Wei: Nanoscale, 7 (2015) 11626. https://doi.org/10.1039/C5NR02310F
  3. J. Liu, J. Essner and J. Li: Chem. Mater., 22 (2010) 5022. https://doi.org/10.1021/cm101591p
  4. A. Muzaffar, M. B. Ahamed, K. Deshmukh and J. Thirumalai: Renew. Sust. Energ. Rev., 101 (2019) 123. https://doi.org/10.1016/j.rser.2018.10.026
  5. Y. Wang, Y. Song and Y. Xia: Chem. Soc. Rev., 45 (2016) 5925. https://doi.org/10.1039/c5cs00580a
  6. J. Libich, J. Maca, J. Vondrak, O. Cech and M. Sedlarikova: J. Energy Storage, 17 (2018) 224. https://doi.org/10.1016/j.est.2018.03.012
  7. S. Najib and E. Erdem: Nanoscale Adv., 1 (2019) 2817. https://doi.org/10.1039/c9na00345b
  8. Poonam, K. Sharma, A. Arora and S. K. Tripathi: J. Energy Storage, 21 (2019) 801. https://doi.org/10.1016/j.est.2019.01.010
  9. G. Wang, L. Zhang and J. Zhang: Chem. Soc. Rev., 41 (2012) 797. https://doi.org/10.1039/C1CS15060J
  10. H. Hwang, S. Byun, S. Yuk, S. Kim, S. H. Song and D. Lee: Appl. Surf. Sci., 556 (2021) 149710. https://doi.org/10.1016/j.apsusc.2021.149710
  11. M. A. A. Mohd Abdah, N. H. N. Azman, S. Kulandaivalu and Y. Sulaiman: Mater. Des., 186 (2020) 108199. https://doi.org/10.1016/j.matdes.2019.108199
  12. V. Sharma, I. Singh and A. Chandra: Sci. Rep., 8 (2018) 1307. https://doi.org/10.1038/s41598-018-19815-y
  13. C. Wei, P. S. Lee and Z. Xu: RSC Adv., 4 (2014) 31416. https://doi.org/10.1039/C4RA04914D
  14. A. S. Levitt, M. Alhabeb, C. B. Hatter, A. Sarycheva, G. Dion and Y. Gogotsi: J. Mater. Chem. A, 7 (2019) 269. https://doi.org/10.1039/c8ta09810g
  15. L. Kebabsa, J. Kim, D. Lee and B. Lee: Appl. Surf. Sci., 511 (2020) 145313. https://doi.org/10.1016/j.apsusc.2020.145313
  16. R. Liang, Y. Du, P. Xiao, J. Cheng, S. Yuan, Y. Chen, J. Yuan and J. Chen: Nanomaterials, 11 (2021) 1248. https://doi.org/10.3390/nano11051248
  17. C. An, Y. Zhang, H. Guo and Y. Wang: Nanoscale Adv., 1 (2019) 4644. https://doi.org/10.1039/c9na00543a
  18. S. K. Chang, Z. Zainal, K. B. Tan, N. A. Yusof, W. M. D. Wan Yusoff and S. R. S. Prabaharan: Ceram. Int., 41 (2015) 1. https://doi.org/10.1016/j.ceramint.2014.07.101
  19. A. E. Elkholy, F. El-Taib Heakal and N. K. Allam: RSC Adv., 7 (2017) 51888. https://doi.org/10.1039/C7RA11020K
  20. V. A. Jundale, D. A. Patil, G. Y. Chorage and A. A. Yadav: Materials Today: Proceedings, 43 (2021) 2711. https://doi.org/10.1016/j.matpr.2020.06.204
  21. S. Liu, J. Xie, C. Fang, G. Cao, T. Zhu and X. Zhao: J. Mater. Chem., 22 (2012) 19738. https://doi.org/10.1039/c2jm34019d
  22. B. Qiu, Y. Deng, M. Du, M. Xing and J. Zhang: Sci. Rep., 6 (2016) 29099. https://doi.org/10.1038/srep29099
  23. J. S. Sagu, K. G. U. Wijayantha and A. A. Tahir: Electrochim. Acta, 246 (2017) 870. https://doi.org/10.1016/j.electacta.2017.06.110
  24. E. Pervaiz, T. Thomas, M. J. Afzal and M. Yang: Mater. Res. Express, 6 (2019) 75506. https://doi.org/10.1088/2053-1591/ab1289
  25. J. Yin, L. Shen, Y. Li, M. Lu, K. Sun and P. Xi: J. Mater. Res., 33 (2017) 590.
  26. Z. Zhou, Y. Zhang, Z. Wang, W. Wei, W. Tang, J. Shi and R. Xiong: Appl. Surf. Sci., 254 (2008) 6972. https://doi.org/10.1016/j.apsusc.2008.05.067
  27. J. L. Ortiz-Quinonez, U. Pal and M. S. Villanueva: ACS Omega, 3 (2018) 14986. https://doi.org/10.1021/acsomega.8b02229
  28. W. Chen, X. T. Meng, H. H. Wang, X. Q. Zhang, Y. Wei, Z. Y. Li, D. Li, A. P. Zhang and C. F. Liu: Polymers, 11 (2019) 1968. https://doi.org/10.3390/polym11121968
  29. S. R. Dhakate, A. Chaudhary, A. Gupta, A. K. Pathak, B. P. Singh, K. M. Subhedar and T. Yokozeki: RSC Adv., 6 (2016) 36715. https://doi.org/10.1039/C6RA02672A
  30. L. Chen, D. Ding, C. Liu, H. Cai, Y. Qu, S. Yang, Y. Gao and T. Cai: Chem. Eng. J, 334 (2018) 273. https://doi.org/10.1016/j.cej.2017.10.040
  31. H. Yue, W. Zhang, B. Yu, Y. Hu, Y. Lu, Y. Chen and D. Yang: J. Mater. Sci., 55 (2020) 11489. https://doi.org/10.1007/s10853-020-04718-z
  32. G. Donghui, S. Riku, A. Chisato, S. Shunsuke, K. Takahiro and J. Nakamura: Science, 351 (2016) 361. https://doi.org/10.1126/science.aad0832
  33. H. M. Lee, H. R. Kang, K. H. An, H. G. Kim and B. J. Kim: Carbon Lett., 14 (2013) 180. https://doi.org/10.5714/CL.2013.14.3.180
  34. X. Zhou, B. Liu, Y. Chen, L. Guo and G. Wei: Adv. Mater., 1 (2020) 2163. https://doi.org/10.1039/D0MA00492H
  35. N. Padmanathan and S. Selladurai: RSC Adv., 4 (2014) 8341. https://doi.org/10.1039/c3ra46399k
  36. E. J. Ra, E. Raymundo-Pinero, Y. H. Lee and F. Beguin: Carbon, 47 (2009) 2984. https://doi.org/10.1016/j.carbon.2009.06.051
  37. S. Chen, M. Xue, Y. Li, Y. Pan, L. Zhu and S. Qiu: J. Mater. Chem. A, 3 (2015) 20145. https://doi.org/10.1039/C5TA02557E