• 제목/요약/키워드: electro-resistance

검색결과 340건 처리시간 0.03초

On-Line Electric Vehicle의 EMF 저감을 위한 FCCL 차폐효과 분석 (An Analysis of FCCL Shielding Effect for EMF Attenuation to On-Line Electric Vehicle)

  • 심형욱;김종우;조동호
    • 전기학회논문지
    • /
    • 제63권6호
    • /
    • pp.770-775
    • /
    • 2014
  • According to ICNIRP guidelines for limiting exposure to time-varying electric, magnetic and electromagnetic fields up to 300GHz, magnetic flux density which range from 3Hz to 150kHz are regulated to lower than $6.25{\mu}T$. In order to comply with its standard, OLEV(On-Line Electric Vehicle) have been designed considering EMF(Electro-Magnetic Field) reduction. However, if a current flowing in power line would be bigger for increasing power transfer efficiency, the established shield system no longer acts their role properly. In this paper, therefore, FCCL(Flexible Copper Clad Laminate) is applied to power line and pick-up devices to solve the problems. Though, the FCCL is normally utilized to insulator on circuit board, because of its high heat resistance characteristic, flexibility and thin properties, it makes effectiveness in the shielding device as well. 4 types of FCCL shielding structure are introduced to power line and pick-up devices. From the results, the FCCL which are placed in proposed positions shows maximum EMF reduction compared to the established shielding structure. Henceforth, if OLEV is applied FCCL shielding structure in practice, it will not only be more safe but also step forward to commercialization near future.

마이크로 압전변압기 제작 및 전기-기계적 특성 분석 (Fabrication and Electro-Mechanical Characteristic Analysis of Piezoelectric Micro-transformers)

  • 김성곤;서영호;황경현;최두선
    • 대한기계학회논문집B
    • /
    • 제32권3호
    • /
    • pp.231-234
    • /
    • 2008
  • For the applications which need a micro-power supply such as thin and flat displays, micro-robot, and micro-system, it is especially necessary to integrate the passive components because they typically need more than 2/3 of the space of the conventional circuit. Therefore, we have designed and fabricated a novel piezoelectric micro transformer using the PZT thin film and MEMS technologies for application to the energy supply device of the micro-systems. The dimensions of the micro-transformer is $1000{\mu}m\;{\times}\;400{\mu}m\;{\times}\;4.8{\mu}m$ $(length{\times}width{\times}thickness)$. The dynamic displacement of around $9.2{\pm}0.064{\mu}m$ was observed at 10 V. The dynamic displacement varied almost linearly with applied voltage. The average voltage gain (step-up ratio) was approximately 2.13 at the resonant frequency $(F_r=8.006KHz)$ and load resistance $(R_L)$ of 1 $M{\Omega}$.

Electronic Wedge Brake 시스템의 클램핑력 추정 및 Failsafe 제어 알고리즘 설계에 관한 연구 (A Study on the Clamping Force Estimation and Failsafe Control Algorithm Design of the Electronic Wedge Brake System)

  • 정승환;이형철
    • 한국자동차공학회논문집
    • /
    • 제24권1호
    • /
    • pp.16-23
    • /
    • 2016
  • The EWB(electronic wedge brake) is one in which the braking force is developed in a wedge and caliper system and applied to a disk and wedge mechanism. The advantage of the wedge structure is that it produces self-reinforcing effect and hence, utilizes minimal motor power, resulting in reduced gear and current. The extent of use of clamping force sensors and protection from failure of the EWB system directly depends on the level of vehicle mass production. This study investigated the mathematical equations, simulation modeling, and failsafe control algorithm for the clamping force sensor of the EWB and validated the simulations. As this EWB system modeling can be applied to motor inductance, resistance, screw inertia, stiffness, and wedge mass and angle, this study could improve the accuracy of simulation of the EWB. The simulation results demonstrated the braking force, motor speed, and current of the EWB system when the driver desired to the step and pulse the brake force inputs. Moreover, this paper demonstrated that the proposed failsafe control algorithm accurately detects faults in the clamping force sensor, if any.

Property Enhancement of SiR-EPDM Blend Using Electron Beam Irradiation

  • Deepalaxmi, R.;Rajini, V.
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권3호
    • /
    • pp.984-990
    • /
    • 2014
  • Polymers are the most commonly used di-electrics because of their reliability, availability, ease of fabrication and cost. The commercial and industrial demand for advanced polymeric materials which are capable of being used in harsh environment is need of the hour. The study of the effect of electron beam irradiation on polymeric materials is an area of rapidly increasing interest. This paper discusses the resultant beneficial effects of electron beam irradiation on the SiR-EPDM blend having 50:50 composition. The changes in mechanical and electrical properties of SiR-EPDM blend which are exposed to three different doses of electron beam radiation namely 5 Mrad, 15 Mrad and 25 Mrad are presented. The irradiated blends are analyzed for their electro-mechanical and physico chemical properties. The electrical changes induced by irradiation are investigated by arc resistance, surface resistivity and volume resistivity measurements as per ASTM standards. The mechanical changes are observed by the measurement of tensile strength and elongation at break. Physico chemical investigation has been done using the FTIR, in order to investigate the irradiation induced chemical changes.

$KNO_3$ 전해액을 이용한 Cu 전극의 전기 화학적 반응 특성 고찰 (A study on the Electrochemical Reaction Characteristic of Cu electrode According to the $KNO_3$ electrolyte)

  • 한상준;박성우;이성일;이영균;전영길;최권우;서용진;이우선
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 추계학술대회 논문집
    • /
    • pp.49-49
    • /
    • 2007
  • 최근 반도체 소자의 고집적화와 나노 (nano) 크기의 회로 선폭으로 인해 기존에 사용되었던 텅스텐이나 알루미늄 금속배선보다, 낮은 전기저항과 높은 electro-migration resistance가 필요한 Cu 금속배선이 주목받게 되었다. 하지만, Cu CMP 공정 시 높은 압력으로 인하여 low-k 유전체막의 손상과 디싱과 에로젼 현상으로 인한 문제점이 발생하게 되었다. 본 논문에서는, $KNO_3$ 전해액의 농도가 Cu 표면에 미치는 영향을 알아보기 위해 Tafel Curve와 CV (cyclic voltammograms)법을 사용하여 전기화학적 특징을 알아보았고 scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray Diffraction (XRD) 분석을 통해 금속표면을 비교 분석하였다.

  • PDF

Study of metal dopants and/or Ag nanoparticles incorporated direct-patternable ZnO film by photochemical solution deposition

  • Kim, Hyun-Cheol;Reddy, A.Sivasankar;Park, Hyung-Ho
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 추계학술대회 논문집
    • /
    • pp.368-368
    • /
    • 2007
  • Zinc oxide (ZnO) has drawn much interest as a potential transparent conducting oxide (TCO) for applying to solar cell and front electrode of electro-luminescent devices. For the enhancement of electrical property of TCOs, dopant introduction and hybridization with conductive nanoparticles have been investigated. In this work, ZnO films were formed on glass substrate by using photochemical solution deposition of Ag nanoparticles dispersed or various metal (Ag, Cd, In, or Sn) contained photosensitive ZnO solutions. The usage of photosensitive solution permits us to obtain a micron-sized direct patterning of ZnO film without using conventional dry etching procedure. The structural, optical, and electrical characteristics of ZnO films with the introduction of metal dopants with/without Ag nanoparticles have been investigated to check whether there is a combined effect between metal dopants and Ag nanoparticles on the characteristics of ZnO film. The phase formation and crystallinity of ZnO film were monitored with X-ray diffractometer. The optical transmittance measurement was carried out using UV-VIS-NIR spectrometer and the electrical properties such as sheet resistance and conductivity were observed by using four-point probe.

  • PDF

Highly Productive Process Technologies of Cantilever-type Microprobe Arrays for Wafer Level Chip Testing

  • Lim, Jae-Hwan;Ryu, Jee-Youl;Choi, Woo-Chang
    • Transactions on Electrical and Electronic Materials
    • /
    • 제14권2호
    • /
    • pp.63-66
    • /
    • 2013
  • This paper describes the highly productive process technologies of microprobe arrays, which were used for a probe card to test a Dynamic Random Access Memory (DRAM) chip with fine pitch pads. Cantilever-type microprobe arrays were fabricated using conventional micro-electro-mechanical system (MEMS) process technologies. Bonding material, gold-tin (Au-Sn) paste, was used to bond the Ni-Co alloy microprobes to the ceramic space transformer. The electrical and mechanical characteristics of a probe card with fabricated microprobes were measured by a conventional probe card tester. A probe card assembled with the fabricated microprobes showed good x-y alignment and planarity errors within ${\pm}5{\mu}m$ and ${\pm}10{\mu}m$, respectively. In addition, the average leakage current and contact resistance were approximately 1.04 nA and 0.054 ohm, respectively. The proposed highly productive microprobes can be applied to a MEMS probe card, to test a DRAM chip with fine pitch pads.

초발수 표면을 만들기 위한 마이크로-나노 몰드 제작 공정 (Manufacturing process of micro-nano structure for super hydrophobic surface)

  • 임동욱;박규백;박정래;고강호;이정우;김지훈
    • Design & Manufacturing
    • /
    • 제15권4호
    • /
    • pp.57-64
    • /
    • 2021
  • In recent materials industry, researches on the technology to manufacture super hydrophobic surface by effectively controlling the wettability of solid surface are expanding. Research on the fabrication of super hydrophobic surface has been studied not only for basic research but also for self-cleaning, anti-icing, anti-friction, flow resistance reduction in construction, textile, communication, military and aviation fields. A super hydrophobic surface is defined as a surface having a water droplet contact angle of 150 ° or more. The contact angle is determined by the surface energy and is influenced not only by the chemical properties of the surface but also by the rough structure. In this paper, maskless lithography using DMD, electro etching, anodizing and hot embossing are used to make the polymer resin PMMA surface super hydrophobic. In the fabrication of microstructure, DMDs are limited by the spacing of microstructure due to the structural limitations of the mirrors. In order to overcome this, maskless lithography using a transfer mechanism was used in this paper. In this paper, a super hydrophobic surface with micro and nano composite structure was fabricated. And the wettability characteristics of the micro pattern surface were analyzed.

미세역학시험법과 전기저항 측정을 이용한 탄소섬유/페놀수지 및 탄소나노튜브-페놀수지 복합재료의 계면특성 평가 (Interfacial Evaluation of Single-Carbon Fiber/Phenolic and Carbon Nanotube-Phenolic Composites Using Micromechanical Tests and Electrical Resistance Measurements)

  • 왕작가;권동준;구가영;박종규;이우일;박종만
    • 접착 및 계면
    • /
    • 제11권4호
    • /
    • pp.149-154
    • /
    • 2010
  • 단일 탄소섬유/페놀수지 및 탄소나노튜브-페놀수지 복합재료의 계면적 특성을 젖음성과 함께 전기저항 측정 및 미세역학시험법을 사용하여 평가하였다. 순수 페놀수지 및 탄소나노튜브-페놀수지 복합재료의 Broutman시편을 사용한 압축강도는 인장강도와 비교하였다. 탄소나노튜브-페놀수지 복합재료의 접촉저항은 2점 및 4점법에 의한 경사형 시편을 사용하여 측정하였다. 동적접촉각에 의한 표면에너지와 젖음성은 Wilhelmy 플레이트 법으로 측정하였다. 표면에서 탄소나노튜브가 불균일한 미세구조로 형성되므로, 동적접촉각은 90도 이상의 소수성을 나타내었다. 탄소나노튜브-페놀수지 복합재료는 보다 나은 응력전달 효과에 기인하여 순수 페놀수지보다 더 큰 겉보기 강성도를 보여주었다. 단일 탄소섬유와 탄소나노튜브-페놀수지 복합재료간의 접착일, $W_a$은 탄소나노튜브 첨가로 인한 점도 증가 때문에, 순수 페놀수지 보다 더 크게 나타났다. 이는 마이크로 풀 아웃 시험에서 단일 탄소섬유의 미세파손 형태와 일치함을 보여 주었다.

니켈 표면처리공정에서 전류밀도 효과분석 (Effect of Current Density on Nickel Surface Treatment Process)

  • 김용운;정구형;홍인권
    • 공업화학
    • /
    • 제19권2호
    • /
    • pp.228-235
    • /
    • 2008
  • 니켈 표면처리 공정에서 전류밀도에 따라 니켈의 전착두께가 증가되었으며, 증가폭은 $6{\sim}10A/dm^2$에서 저전류보다 높게 나타났다. 전류밀도를 측정하기 위해 Hull-cell 분석을 수행 하였다. 최적 공정온도는 $60^{\circ}C$, pH는 3.5~4.0이었고, 전해용액 중 니켈이온의 농도는 300 g/L 이상에서 농도에 따라 전착두께가 증가되었다. 전류밀도에 따라 용액 중 니켈이온 감소 속도가 증가되었는데, 이는 음극표면에서 니켈 전착 량에 따른 전착두께의 증가를 나타낸다. 그러나 전착속도가 빠를 경우 니켈 전착 층의 치밀성은 저하되며, 표면의 상태는 불규칙하게 변화된다. 니켈이온의 전착과정이 불규칙하게 일어나 조직의 pin hole 등을 야기해 표면특성을 저하시키는 것으로 확인되었다. 광택니켈 전착 후 25 h 내식을 유지한 결과, 낮은 전류밀도를 유지하는 것이 내식특성이 우수한 것으로 나타났다. 프로그램모사 결과, 전류밀도가 높아질수록 확산 층의 두께는 증가하며, 음극표면의 농도는 낮아진다. 농도분포는 낮은 전류밀도에서 고른 분포를 나타내었으며 이는 일정한 전착두께를 예측할 수 있다. 생산성 저하를 예방하기 위해 공정시간은 크게 변화시키지 않았으며, 전류밀도와 전착두께를 변화시키면서 공정변수를 조절하였다. 본 연구의 표면분석 결과 조직특성이나 내식성 등의 표면 물성이 낮은 전류밀도를 사용할 경우에 더욱 우수한 것으로 나타났다.