DOI QR코드

DOI QR Code

Highly Productive Process Technologies of Cantilever-type Microprobe Arrays for Wafer Level Chip Testing

  • Lim, Jae-Hwan (Department of Information and Communication Engineering, Pukyong National University) ;
  • Ryu, Jee-Youl (Department of Information and Communication Engineering, Pukyong National University) ;
  • Choi, Woo-Chang (MEMS/NANO Fabrication Center)
  • Received : 2012.12.27
  • Accepted : 2013.01.23
  • Published : 2013.04.25

Abstract

This paper describes the highly productive process technologies of microprobe arrays, which were used for a probe card to test a Dynamic Random Access Memory (DRAM) chip with fine pitch pads. Cantilever-type microprobe arrays were fabricated using conventional micro-electro-mechanical system (MEMS) process technologies. Bonding material, gold-tin (Au-Sn) paste, was used to bond the Ni-Co alloy microprobes to the ceramic space transformer. The electrical and mechanical characteristics of a probe card with fabricated microprobes were measured by a conventional probe card tester. A probe card assembled with the fabricated microprobes showed good x-y alignment and planarity errors within ${\pm}5{\mu}m$ and ${\pm}10{\mu}m$, respectively. In addition, the average leakage current and contact resistance were approximately 1.04 nA and 0.054 ohm, respectively. The proposed highly productive microprobes can be applied to a MEMS probe card, to test a DRAM chip with fine pitch pads.

Keywords

References

  1. M. Beiley, J. Leung and S. S. Wong, IEEE T Compon. Pack. T. B 18, 184 (1995) [DOI: http://dx.doi.org/10.1109/96.365507].
  2. M. D. Cooke, and D. Wood, Microsyst. Technol. 12, 1037 (2006) [DOI: http://dx.doi.org/10.1007/s00542-006-0118-y].
  3. M. Zargari, J. Leung, S. S. Wong, and B. A. Wooley, IEEE. J. Solid-St. Circ. 34, 1118 (1999) [DOI: http://dx.doi. org/10.1109/4.777110].
  4. T. Hauck, W. H. Müller, and I. Schmadlak, Microsyst. Technol. 16, 1909 (2010) [DOI: http://dx.doi.org/10.1007/s00542-010- 1115-8].
  5. T. H. Lin, H. Yang, C. K. Chao, and M. S. Yeh, Microsyst. Technol. 16, 1215 (2010) [DOI: http://dx.doi.org/10.1007/s00542-009- 0964-5].
  6. F. Wang, X. Li, and S. Feng, J. Micromech. Microeng. 18, 1 (2008) [DOI: http://dx.doi.org/10.1088/0960-1317/18/5/055008].
  7. F. Wang, X. Li, N. Guo, Y. Wang, and S. Feng, J. Micromech. Microeng. 16, 1215 (2006) [DOI: http://dx.doi.org/10.1088/0960- 1317/16/7/014].
  8. W. C. Choi and J. Y. Ryu, Microsyst. Technol. 17, 143 (2011) [DOI: http://dx.doi.org/10.1007/s00542-010-1159-9].
  9. W. C. Choi and J. Y. Ryu, Microsyst. Technol. 18, 333 (2012) [DOI: http://dx.doi.org/10.1007/s00542-012-1445-9].
  10. B. H. Kim and J. B. Kim, J. Micromech. Microeng. 18, 1 (2008) [DOI: http://dx.doi.org/10.1088/0960-1317/18/7/075031].
  11. B. H. Kim, H. C. Kim, S. D. Choi, K. Chun, J. B. Kim, and J. H. Kim, J. Micromech. Microeng. 17, 1350 (2007) [DOI: http:// dx.doi.org/10.1088/0960-1317/17/7/018].
  12. S. Park, B. Kim, J. Kim, S. Paik, B. D. Choi, I. Jung, K. Chun, and D. I. Cho, J. Micromech. Microeng. 12, 650 (2002) [DOI: http:// dx.doi.org/10.1088/0960-1317/12/5/321].
  13. B. H. Kim, H. C. Kim, K. Chun, J. Ki, and Y. Tak, Jpn. J. Appl. Phys. 43, 3877 (2004) [DOI: http://dx.doi.org/10.1143/ JJAP.43.3877].
  14. Y. Zhang and R. B. Marcus, IEEE J. Microelectromech. S. 8, 43 (1999) [DOI: http://dx.doi.org/10.1109/84.749401].
  15. L. S. Stephens, K. W. Kelly, S. Simhadri, A. B. McCandless, and E. I. Meletis, IEEE J. Microelectromech. S. 10, 347 (2001) [DOI: http://dx.doi.org/10.1109/84.946780]
  16. E. Mazza, S. Abel, and J. Dual, Microsyst. Technol. 2, 197 (1996) [DOI: http://dx.doi.org/10.1007/BF02739559].
  17. Y. M. Kim, H. C. Yoon, and J. H. Lee, ETRI J. 27, 433 (2005) [DOI: http://dx.doi.org/10.4218/etrij.05.0104.0080].

Cited by

  1. Real-Time Electrical Characteristics of Microprobe Testing Process in Microelectronics Packaging vol.31, pp.1, 2018, https://doi.org/10.1109/TSM.2017.2771802