• 제목/요약/키워드: elastic shear stress

검색결과 433건 처리시간 0.023초

세 가지 상을 갖는 코드섬유-고무 복합재료의 계면의 영향 (Effect of Interface in Three-phase Cord-Rubber Composites)

  • 김종국;염영진
    • 대한기계학회논문집A
    • /
    • 제33권11호
    • /
    • pp.1249-1255
    • /
    • 2009
  • Cord-rubber composites widely used in tires show very complicated mechanical behavior such as nonlinearity and large deformation. Three-phase(cord, rubber and the interface) modeling has been used to analyze the stress distribution in the cord-rubber composites more accurately. In this study, finite element methods were performed using two-dimensional generalized plane strain element and plane strain element to investigate the stress distribution and effective modulus of cord-rubber composites. Neo Hookean model was used for rubber property and several interface properties were assumed for various loading directions. It was found that the interface properties affect the effective modulus and the distributions of shear stress.

시간적분형 운동방정식에 근거한 동점탄성 문제의 응력해석 (Transient Linear Viscoelastic Stress Analysis Based on the Equations of Motion in Time Integral)

  • 이성희;심우진
    • 대한기계학회논문집A
    • /
    • 제27권9호
    • /
    • pp.1579-1588
    • /
    • 2003
  • In this paper, the finite element equations for the transient linear viscoelastic stress analysis are presented in time domain, whose variational formulation is derived by using the Galerkin's method based on the equations of motion in time integral. Since the inertia terms are not included in the variational formulation, the time integration schemes such as the Newmark's method widely used in the classical dynamic analysis based on the equations of motion in time differential are not required in the development of that formulation, resulting in a computationally simple and stable numerical algorithm. The viscoelastic material is assumed to behave as a standard linear solid in shear and an elastic solid in dilatation. To show the validity of the presented method, two numerical examples are solved nuder plane strain and plane stress conditions and good results are obtained.

전단파와 전자기파를 이용한 연약 지반의 실내 압밀 특성 평가 (Evaluation of Consolidation Properties in Soft Soils Using Elastic and Electromagnetic Waves)

  • 이창호;윤형구;김준한;이종섭
    • 한국지반공학회논문집
    • /
    • 제24권8호
    • /
    • pp.25-34
    • /
    • 2008
  • 연약 지반의 거동 특성 평가를 위하여 전단파 속도와 전기저항을 측정할 수 있는 새로운 압밀셀을 개발하였다. 전단파의 발진과 수신을 위한 벤더엘리먼트는 압밀셀의 상 하부판 및 벽면에 설치하였다. 국부적인 간극비 변화를 평가하기 위하여 이중 쐐기 형식의 전기저항 탐침을 적용하였다. 벤더 엘리먼트와 전기저항 탐침은 나일론 재질의 스크류 안에 고정하였다. 나일론 재질의 스크류는 압밀셀과의 임피던스 차이로 인하여 압밀셀을 통한 파의 직접적 전달을 최소화하며, 고장난 벤더 엘리먼트와 전기저항 탐침을 쉽게 교환하게 해준다. 전기저항-대수 시간 곡선의 기울기 및 전단파 속도의 변화로부터 일차 압밀 시간을 평가하였다. 교란 효과가 적을 경우, 입자 배열은 전단파 속도에 영향을 미치며 이로부터 흙의 고유 이방성을 평가할 수 있었다. 압밀 실험동안 침하량으로 산정한 간극비와 전기저항으로부터 계산된 간극비는 거의 유사한 것으로 나타났다. 본 연구는 전단퐈 속도와 전기저항이 일차 압밀, 고유 이방성, 간극비 등 연약 지반의 압밀 특성 파악을 위한 보완적인 정보를 제공해 줌을 보여준다.

정규압밀점토에서의 피에조 콘 관입에 의한 과잉간극수압에 대한 연구 (Initial Excess Pore Pressure Induced by Cone Penetration in Normally Consolidated Clays)

  • 임형덕;이우진;김대규
    • 한국지반공학회논문집
    • /
    • 제19권1호
    • /
    • pp.151-161
    • /
    • 2003
  • 본 연구에서는 콘 선단부 주변의 정규압밀점토 요소의 응력 경로가 삼축압축시험의 응력 경로와 같고 흙 요소를 탄성-완전 소성 재료로 가정하여, 콘 관입에 따른 과잉간극수압의 두 요소를 포함한 응력 상태를 평가할 수 있는 방법을 제안하였다. 제안된 방법은 루이지애나 주립대학교 모형 토조에서 수행된 소형 피에조 콘 시험결과에 적용하였다. 해석결과에 의하면, 제안된 방법에 의해 산정된 $\Delta{u}_{oct}$/ $\Delta{u}$ and $\Delta{u}_{shear}$/$\Delta{u}$ 는 오직 간극수압계수의 함수인 것으로 나타났다. 또한, 기존의 이론해에서는 비배수 전단강도, 강성지수와 같은 흙의 물성치 산정의 정확성에 따라 좌우되는 반면에 제안된 방법은 간극수압계수에 따른 일관된 결과를 주며 기존의 연구결과와도 일치하는 것으로 나타났다.

Influence of indenter shape on nanoindentation: an atomistic study

  • Lai, Chia-Wei;Chen, Chuin-Shan
    • Interaction and multiscale mechanics
    • /
    • 제6권3호
    • /
    • pp.301-316
    • /
    • 2013
  • The influence of indenter geometry on nanoindentation was studied using a static molecular dynamics simulation. Dislocation nucleation, dislocation locks, and dislocation movements during nanoindentation into Al (001) were studied. Spherical, rectangular, and Berkovich indenters were modeled to study the material behaviors and dislocation activities induced by their different shapes. We found that the elastic responses for the three cases agreed well with those predicted from elastic contact theory. Complicated stress fields were generated by the rectangular and Berkovich indenters, leading to a few uncommon nucleation and dislocation processes. The calculated mean critical resolved shear stresses for the Berkovich and rectangular indenters were lower than the theoretical strength. In the Berkovich indenter case, an amorphous region was observed directly below the indenter tip. In the rectangular indenter case, we observed that some dislocation loops nucleated on the plane. Furthermore, a prismatic loop originating from inside the material glided upward to create a mesa on the indenting surface. We observed an unusual softening phenomenon in the rectangular indenter case and proposed that heterogeneously nucleating dislocations are responsible for this.

Combined effects of material properties and boundary conditions on the large deflection bending analysis of circular plates on a nonlinear elastic foundation

  • Altekin, Murat
    • Computers and Concrete
    • /
    • 제25권6호
    • /
    • pp.537-549
    • /
    • 2020
  • Geometrically nonlinear axisymmetric bending analysis of shear deformable circular plates on a nonlinear three-parameter elastic foundation was made. Plates ranging from "thin" to "moderately thick" were investigated for three types of material: isotropic, transversely isotropic, and orthotropic. The differential equations were discretized by means of the finite difference method (FDM) and the differential quadrature method (DQM). The Newton-Raphson method was applied to find the solution. A parametric investigation using seven unknowns per node was presented. The novelty of the paper is that detailed numerical simulations were made to highlight the combined effects of the material properties and the boundary conditions on (i) the deflection, (ii) the stress resultants, and (iii) the external load. The formulation was verified through comparison studies. It was observed that the results are highly influenced from the boundary conditions, and from the material properties.

Beam-Column의 동적(動的) 역성(逆性) 응답(應答)에 관한 이산화(離散化) 해석(解析) (A Discrete Analysis of Dynamic Plastic Response of Beam-Columns)

  • 박성환;장창두
    • 대한조선학회지
    • /
    • 제24권3호
    • /
    • pp.43-51
    • /
    • 1987
  • In this paper, dynamic elastic, plastic response of beam-columns is analysed using discrete models. composed of rigid bars and springs. The equation of motion is formulated including the shear deformation effect, and the stress change of yielding points is calculated with various yielding criteria. The effect of initial axial force is considered by two ways: (1) including the effect in interaction curve only. (2) including the effect directly in the equation of motion in terms of initial stiffness method is also used in nonlinear interaction procedure. It is found that this model is very effective in analysing not only the plastic response but the elastic response, and present method is more efficient than Finite Element Method from the viewpoint of calculation time and accuracy.

  • PDF

Time-domain hydroelastic analysis with efficient load estimation for random waves

  • Kang, H.Y.;Kim, M.H.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제9권3호
    • /
    • pp.266-281
    • /
    • 2017
  • Hydroelastic interactions of a deformable floating body with random waves are investigated in time domain. Both hydroelastic motion and structural dynamics are solved by expansion of elastic modes and Fourier transform for the random waves. A direct and efficient structural analysis in time domain is developed. In particular, an efficient way of obtaining distributive loads for the hydrodynamic integral terms including convolution integral by using Fubini theory is explained. After confirming correctness of respective loading components, calculations of full distributions of loads in random waves are expedited by reformulating all the body loading terms into distributed forms. The method is validated by extensive convergence tests and comparisons against the counterparts of the frequency-domain analysis. Characteristics of motion/deformation responses and stress resultants are investigated through a parametric study with varying bending rigidity and types of random waves. Relative contributions of componential loads are identified. The consequence of elastic-mode resonance is underscored.

콘크리트 보강용 하이브리드 FRP 리바의 특성 (The properties of hybrid FRP rebar for concrete structures)

  • 원종필;박찬기;황금식;윤종환
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.255-260
    • /
    • 2003
  • The corrosion of steel rebars has been the major cause of the reinforced concrete deterioration. It is FRP rebar that is developed to solve problem of such steel rebar. FRP rebar in concrete structures should be used as a substitute of steel rebars for that cases in which aggressive environment produce high steel corrosion, or lightweight is an important design factor, or transportation cost increase significantly with the weight of the materials. But FRP rebar have only linearly elastic behavior; whereas, steel rebar has linear elastic behavior up to the yield point followed by large plastic deformation and strain hardening. Thus, the current FRP rebars are not suitable concrete reinforcement where a large amount of plastic deformation prior to collapse in required. The main objective of this study was to develop new type of hybrid FRP rebar. The manufacture of the hybrid FRP rebar was achieved pultrusion, braiding and filament winding techniques. Tensile and interlaminar shear test results of hybrid FRP rebar can provide its excellent tensile strength-strain behavior and interlaminar stress-strain behavior.

  • PDF

Plane strain bending of a bimetallic sheet at large strains

  • Alexandrov, Sergei E.;Kien, Nguyen D.;Manh, Dinh V.;Grechnikov, Fedor V.
    • Structural Engineering and Mechanics
    • /
    • 제58권4호
    • /
    • pp.641-659
    • /
    • 2016
  • This paper deals with the pure bending of incompressible elastic perfectly plastic two-layer sheets under plane strain conditions at large strains. Each layer is classified by its yield stress, shear modulus of elasticity and its initial percentage thickness in relation to the whole sheet. The solution found is semi-analytic. In particular, a numerical technique is only necessary to solve transcendental equations. The general solution is cumbersome because different analytic expressions for the radial and circumferential stresses should be adopted in different regions of the whole sheet. In particular, there are several alternative ways a plastic region (or plastic regions) can propagate. However, for any given set of material and process parameters the solution to the problem consists of a sequence of rather simple analytic expressions connected by transcendental equations. The general solution is illustrated by a simple example.