Browse > Article
http://dx.doi.org/10.12989/cac.2020.25.6.537

Combined effects of material properties and boundary conditions on the large deflection bending analysis of circular plates on a nonlinear elastic foundation  

Altekin, Murat (Department of Civil Engineering, Yildiz Technical University)
Publication Information
Computers and Concrete / v.25, no.6, 2020 , pp. 537-549 More about this Journal
Abstract
Geometrically nonlinear axisymmetric bending analysis of shear deformable circular plates on a nonlinear three-parameter elastic foundation was made. Plates ranging from "thin" to "moderately thick" were investigated for three types of material: isotropic, transversely isotropic, and orthotropic. The differential equations were discretized by means of the finite difference method (FDM) and the differential quadrature method (DQM). The Newton-Raphson method was applied to find the solution. A parametric investigation using seven unknowns per node was presented. The novelty of the paper is that detailed numerical simulations were made to highlight the combined effects of the material properties and the boundary conditions on (i) the deflection, (ii) the stress resultants, and (iii) the external load. The formulation was verified through comparison studies. It was observed that the results are highly influenced from the boundary conditions, and from the material properties.
Keywords
plate; nonlinear; Pasternak, Winkler; foundation; deflection;
Citations & Related Records
Times Cited By KSCI : 9  (Citation Analysis)
연도 인용수 순위
1 Civalek, O. (2013), "Nonlinear dynamic response of laminated plates on nonlinear elastic foundations by the discrete singular convolution-differential quadrature coupled approaches", Compos.: Part B, 50, 171-179. https://doi.org/10.1016/j.compositesb.2013.01.027.   DOI
2 Draiche, K., Bousahla, A.A., Tounsi, A., Alwabli, A.S., Tounsi, A. and Mahmoud, S.R. (2019), "Static analysis of laminated reinforced composite plates using a simple first-order shear deformation theory", Comput. Concrete, 24(4), 369-378. https://doi.org/10.12989/cac.2019.24.4.369.   DOI
3 Dumir, P.C. (1985), "Non-linear axisymmetric response of orthotropic thin spherical caps on elastic foundations", Int. J. Mech. Sci., 27(11-12), 751-760. https://doi.org/10.1016/0020-7403(85)90007-4.   DOI
4 Dumir, P.C. and Shingal, L. (1986), "Nonlinear analysis of thick circular plates", J. Eng. Mech., 112(3), 260-272. https://doi.org/10.1061/(ASCE)0733-9399(1986)112:3(260).   DOI
5 Eftekhari, S.A. (2016), "A modified differential quadrature procedure for numerical solution of moving load problem", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 230(5), 715-731. https://doi.org/10.1177/0954406215584630.   DOI
6 Akgoz, B. and Civalek, O. (2011), "Nonlinear vibration analysis of laminated plates resting on nonlinear two-parameters elastic foundations", Steel Compos. Struct., 11(5), 403-421. https://doi.org/10.12989/scs.2011.11.5.403.   DOI
7 Jedrysiak, J. and Kazmierczak-Sobinska, M. (2015), "On free vibrations of thin functionally graded plate bands resting on an elastic foundation", J. Theor. Appl. Mech., 53(3), 629-642. https://doi.org/10.15632/jtam-pl.53.3.629.
8 Kargaudas, V., Adamukaitis, N., Zmuida, M., Pakalnis, A. and Zadlauskas, S. (2019), "Elastic foundation displacement approximations", Baltic J. Road Bridge Eng., 14(2), 125-135. https://doi.org/10.7250/bjrbe.2019-14.436.   DOI
9 Alibeigloo, A. and Simintan, V. (2011), "Elasticity solution of functionally graded circular and annular plates integrated with sensor and actuator layers using differential quadrature", Compos. Struct., 93(10), 2473-2486. https://doi.org/10.1016/j.compstruct.2011.04.003.   DOI
10 Altekin, M. (2018), "Bending of super-elliptical Mindlin plates by finite element method", Teknik Dergi/Tech. J. Turkish Chamb. of Civil Eng., 29(4), 8469-8496. https://doi.org/10.18400/tekderg.332384.
11 Katsikadelis, J.T. (2014), The Boundary Element Method for Plate Analysis, Academic Press.
12 Nassar, M. and Labib A.M. (1988), "Vibrations of circular plates with linearly varying thickness resting on a nonlinear elastic foundation", Proc. Ind. Nat. Sci. Acad. Part A. Phys. Sci., 54(1), 88-94.
13 Rad, A.B. (2012), "Static analysis of two directional functionally graded circular plate under combined axisymmetric boundary conditions", Int. J. Eng. Appl. Sci., 4(3), 36-48.
14 Rades, M. (1971), "Dynamic response of a rigid circular plate on a Kerr-type foundation model", Int. J. Eng. Sci., 9(11), 1061-1073. https://doi.org/10.1016/0020-7225(71)90002-4.   DOI
15 Rajasekaran, S. and Varghese, S.P. (2005), "Damage detection in beams and plates using wavelet transforms", Comput. Concrete, 2(6), 481-498. http://dx.doi.org/10.12989/cac.2005.2.6.481.   DOI
16 Sepahi, O., Forouzan, M.R. and Malekzadeh, P. (2010), "Large deflection analysis of thermo-mechanical loaded annular FGM plates on nonlinear elastic foundation via DQM", Compos. Struct., 92(10), 2369-2378. https://doi.org/10.1016/j.compstruct.2010.03.011.   DOI
17 Shu, C. and Du, H. (1997), "A generalized approach for implementing general boundary conditions in the GDQ free vibration analysis of plates", Int. J. Solid. Struct., 34(7), 837-846. https://doi.org/10.1016/S0020-7683(96)00056-X.   DOI
18 Shu, C. (2000), Differential Quadrature and its Application in Engineering, Springer-Verlag, London.
19 Alwar, R.S. and Reddy, S. (1979), "Large deflection static and dynamic analysis of isotropic and orthotropic annular plates", Int. J. Nonlin. Mech., 14(5-6), 347-359. https://doi.org/10.1016/0020-7462(79)90008-8.   DOI
20 Altekin, M. (2019), "Axisymmetric nonlinear bending of shear deformable orthotropic circular plates on elastic foundation", PCM-CMM 2019, Krakow, Poland.
21 Anh, V.T.T. and Duc, N.D. (2016), "Nonlinear response of a shear deformable S-FGM shallow spherical shell with ceramic-metal-ceramic layers resting on an elastic foundation in a thermal environment", Mech. Adv. Mater. Struct., 23(8), 926-934. https://doi.org/10.1080/15376494.2015.1059527.   DOI
22 Bert, C.W. and Malik, M. (1996), "Differential quadrature in computational mechanics: A review", Appl. Mech. Rev., 49(1), 1-28. https://doi.org/10.1115/1.3101882.   DOI
23 Bhardwaj, N., Gupta, A.P. and Choong, K.K. (2007), "Effect of elastic foundation on the vibration of orthotropic elliptic plates with varying thickness", Meccanica, 41(4), 341-358. https://doi.org/10.1007/s11012-007-9059-5.   DOI
24 Sofiyev, A.H. and Kuruoglu, N. (2017), "Combined effects of transverse shear stresses and nonlinear elastic foundations on the nonlinear dynamic response of heterogeneous orthotropic cylindrical shells", Compos. Struct., 166, 153-162. http://dx.doi.org/10.1016/j.compstruct.2017.01.058.   DOI
25 Bourad, F., Amara, K. and Tounsi, A. (2016), "Buckling analysis of isotropic and orthotropic plates using a novel four variable refined plate theory", Steel Compos. Struct., 21(6), 1287-1306. https://doi.org/10.12989/scs.2016.21.6.1287.   DOI
26 Keleshteri, M.M., Asadi, H. and Aghdam, M.M. (2019), "Nonlinear bending analysis of FG-CNTRC annular plates with variable thickness on elastic foundation", Thin Wall. Struct., 135, 453-462. https://doi.org/10.1016/j.tws.2018.11.020.   DOI
27 Kutlu, A. and Omurtag, M.H. (2012), "Large deflection bending analysis of elliptic plates on orthotropic elastic foundation with mixed finite element method", Int. J. Mech. Sci., 65(1), 64-74. https://doi.org/10.1016/j.ijmecsci.2012.09.004.   DOI
28 Singh, B.N., Lal, A. and Kumar, R. (2008), "Nonlinear bending response of laminated composite plates on nonlinear elastic foundation with uncertain system properties", Eng. Struct., 30(4), 1101-1112. https://doi.org/10.1016/j.engstruct.2007.07.007.   DOI
29 Sofiyev, A.H., Karaca, Z. and Zerin, Z. (2017), "Non-linear vibration of composite orthotropic cylindrical shells on the non-linear elastic foundations within the shear deformation theory", Compos. Struct., 159, 53-62. http://dx.doi.org/10.1016/j.compstruct.2016.09.048.   DOI
30 Striz, A.G., Jang, S.K. and Bert, C.W. (1988), "Nonlinear bending analysis of thin circular plates by differential quadrature", Thin Wall. Struct., 6(1), 51-62. https://doi.org/10.1016/0263-8231(88)90025-0.   DOI
31 Szilard, R. (2004), Theories and Applications of Plate Analysis, John Wiley & Sons Inc., New Jersey.
32 Tajeddini, V., Ohadi, A. and Sadighi, M. (2011), "Three-dimensional free vibration of variable thickness thick circular and annular isotropic and functionally graded plates on Pasternak foundation", Int. J. Mech. Sci., 53(4), 300-308. https://doi.org/10.1016/j.ijmecsci.2011.01.011.   DOI
33 Temel, B. and Sahan, M.F. (2013), "Transient analysis of orthotropic, viscoelastic thick plates in the Laplace domain", Eur. J. Mech. A-Solid., 37, 96-105. https://doi.org/10.1016/j.euromechsol.2012.05.008.   DOI
34 Mathews, J.H. (1992), Numerical Methods for Mathematics, Science and Engineering, Prentice-Hall International Inc., USA.
35 Temel, B. and Noori, A.R. (2020), "A unified solution for the vibration analysis of two-directional functionally graded axisymmetric Mindlin-Reissner plates with variable thickness", Int. J. Mech. Sci., 174, 105471. https://doi.org/10.1016/j.ijmecsci.2020.105471.   DOI
36 Lal, R. and Ahlawat, N. (2015), "Axisymmetric vibrations and buckling analysis of functionally graded circular plates via differential transform method", Eur. J. Mech.-A/Solid., 52, 85- 94. http://dx.doi.org/10.1016/j.euromechsol.2015.02.004.   DOI
37 Lamacchia, E., Pirrera, A., Chenchiah, I.V. and Weaver, P.M. (2014), "Non-axisymmetric bending of thin annular plates due to circumferentially distributed moments", Int. J. Solid. Struct., 51, 622-632. http://dx.doi.org/10.1016/j.ijsolstr.2013.10.028.   DOI
38 Levinson, M. (1983), "Generalized Vlasov-Jones foundation model: A foundation of grade 4", Int. J. Mech. Sci., 25(2), 149-154. https://doi.org/10.1016/0020-7403(83)90007-3.   DOI
39 Li, X.Y., Ding, H.J. and Chen, W.Q. (2008), "Elasticity solutions for a transversely isotropic functionally graded circular plate subject to an axisymmetric transverse load $qr^{k}$", Int. J. Solid. Struct., 45(1), 191-210. https://doi.org/10.1016/j.ijsolstr.2007.07.023.   DOI
40 Thai, H.T. and Kim, S.E. (2012), "Levy-type solution for free vibration analysis of orthotropic plates based on two variable refined plate theory", Appl. Math. Model., 36(8), 3870-3882. https://doi.org/10.1016/j.apm.2011.11.003.   DOI
41 Muradova, A.D. and Stavroulakis, G.E. (2012), "Buckling and postbuckling analysis of rectangular plates resting on elastic foundations with the use of the spectral method", Comput. Meth. Appl. Mech. Eng., 205-208, 213-220. https://doi.org/10.1016/j.cma.2011.02.013.   DOI
42 Najafi, F., Shojaeefard, M.H. and Googarchin, H.S. (2016), "Nonlinear low-velocity impact response of functionally graded plate with nonlinear three-parameter elastic foundation in thermal field", Compos. Part B, 107, 123-140. https://doi.org/10.1016/j.compositesb.2016.09.070.   DOI
43 Abualnour, M., Chikh, A., Hebali, H., Kaci, A., Tounsi, A, Bousahla, A.A. and Tounsi, A. (2019), "Thermomechanical analysis of antisymmetric laminated reinforced composite plates using a new four variable trigonometric refined plate theory", Comput. Concrete, 24(6), 489-498. https://doi.org/10.12989/cac.2019.24.6.489.   DOI
44 Wu, X. and Ren, Y. (2007), "Differential quadrature method based on the highest derivative and its applications", J. Comput. Appl. Math., 205(1), 239-250. https://doi.org/10.1016/j.cam.2006.04.055.   DOI
45 Vivio, F. and Vullo, V. (2010), "Closed form solutions of axisymmetric bending of circular plates having non-linear variable thickness", Int. J. Mech. Sci., 52(9), 1234-1252. https://doi.org/10.1016/j.ijmecsci.2010.05.011   DOI
46 Wang, X. (2015), Differential Quadrature and Differential Quadrature Based Element Methods Theory and Applications, Elsevier, USA.
47 Wang, Y., Ding, H. and Xu, R. (2016), "Three-dimensional analytical solutions for the axisymmetric bending of functionally graded annular plates", Appl. Math. Model., 40(9-10), 5393-5420. http://dx.doi.org/10.1016/j.apm.2015.11.051.   DOI
48 Yas, M.H. and Tahouneh, V. (2012), "3-D free vibration analysis of thick functionally graded annular plates on Pasternak elastic foundation via differential quadrature method (DQM)", Acta Mechanica, 223(1), 43-62. https://doi.org/10.1007/s00707-011-0543-6.   DOI
49 Yildirim, S. and Tutuncu, N. (2018), "Axisymmetric plane vibration analysis of polar anisotropic disks", Compos. Struct., 194, 509-515. https://doi.org/10.1016/j.compstruct.2018.04.040.   DOI
50 Zenkour, A.M. (2011), "Bending of orthotropic plates resting on Pasternak's foundations using mixed shear deformation theory", Acta Mechanica Sinica, 27(6), 956-962. https://doi.org/10.1007/s10409-011-0515-z.   DOI
51 Zhao, S. and Wei, G.W. (2009), "Matched interface and boundary (MIB) for the implementation of boundary conditions in high-order central finite differences", Int. J. Numer. Meth. Eng., 77(12), 1690-1730. https://doi.org/10.1002/nme.2473.   DOI
52 Han, J.B. and Liew, K.M. (1997), "An eight-node curvilinear differential quadrature formulation for Reissner/Mindlin plates", Comput. Meth. Appl. Mech. Eng., 141(3-4), 265-280, https://doi.org/10.1016/S0045-7825(96)01115-2.
53 Chien, R.D. and Chen, C.S. (2005), "Nonlinear vibration of laminated plates on a nonlinear elastic foundation", Compos. Struct., 70(1), 90-99. https://doi.org/10.1016/j.compstruct.2004.08.015.   DOI
54 Civalek, O. and Catal, H.H. (2003), "Linear static and vibration analysis of circular and annular plates by the harmonic differential quadrature (HDQ) method", Eskisehir Osmangazi Universitesi Muhendislik ve Mimarlik Fakultesi Dergisi, 16(1), 43-71.
55 Addou, F.Y., Meradjah, M. Bousahla, A.A., Benachour, A., Bourada, F., Tounsi, A. and Mahmoud, S.R. (2019), "Influences of porosity on dynamic response of FG plates resting on Winkler/Pasternak/Kerr foundation using quasi 3D HSDT", Comput. Concrete, 24(4), 347-367. https://doi.org/10.12989/cac.2019.24.4.347.   DOI
56 Guminiak, M. and Knitter-Piatkowska, A. (2018), "Selected problems of damage detection in internally supported plates using one-dimensional discrete wavelet transform", J. Theor. Appl. Mech., 56(3), 631-644. https://doi.org/10.15632/jtam-pl.56.3.631.
57 Zheng, J. and Zhou, X. (2007), "A new numerical method for axisymmetrical bending of circular plates wih large deflection", Key Eng. Mater., 353-358(4), 2699-2702. https://doi.org/10.4028/www.scientific.net/KEM.353-358.2699.   DOI
58 Zong, Z. and Zhang, Y. (2009), Advanced Differential Quadrature Methods, Chapman & Hall/CRC, Boca Raton.
59 Civalek, O. and Ersoy, H. (2009), "Free vibration and bending analysis of circular Mindlin plates using singular convolution method", Commun. Numer. Meth. Eng., 25(8), 907-922. https://doi.org/10.1002/cnm.1138.   DOI
60 Haciyev, V.C., Sofiyev, A.H. and Kuruoglu, N. (2019), "On the free vibration of orthotropic and inhomogeneous with spatial coordinates plates resting on the inhomogeneous viscoelastic foundation", Mech. Adv. Mater. Struct., 26(10), 886-897. https://doi.org/10.1080/15376494.2018.1430271.   DOI
61 Han, J.B. and Liew, K.M. (1999), "Axisymmetric free vibration of thick annular plates", Int. J. Mech. Sci., 41(9), 1089-1109. https://doi.org/10.1016/S0020-7403(98)00057-5.   DOI
62 Hejripour, F. and Saidi, A. (2011), "Nonlinear free vibration analysis of annular sector plates using differential quadrature method", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., https://doi.org/10.1177/0954406211414517.
63 Hsu, M.H. (2007), "Vibration analysis of annular plates", Tamkang J. Sci. Eng., 10(3), 193-199. https://doi.org/10.6180/jase.2007.10.3.02.
64 Jayachandran, S.A., Seetharaman, S. and Abraham, S. (2008), "Simple formulation for the flexure of plates on nonlinear foundation", J. Eng. Mech., 134(1), 110-115. https://doi.org/10.1061/ASCE0733-93992008134:1110.   DOI
65 Jemielita, G. and Kozyra, Z. (2018), "Modelling of FGM plates", J. Theor. Appl. Mech., 56(3), 829-839. https://doi.org/10.15632/jtam-pl.56.3.829.   DOI