• 제목/요약/키워드: eigenvalue method

검색결과 734건 처리시간 0.027초

A Proposal of Simplified Eigenvalue Equation for an Analysis of Dielectric Slab Waveguide

  • Choi Young-Kyu
    • Journal of Electrical Engineering and Technology
    • /
    • 제1권3호
    • /
    • pp.381-386
    • /
    • 2006
  • In dielectric waveguide analysis and synthesis, we often encounter an awkward task of solving the eigenvalue equation to find the value of propagation constant. Since the dispersion equation is an irrational equation, we cannot solve it directly. Taking advantage of approximated calculation, we attempt here to solve this irrational dispersion equation. A new type of eigenvalue equation, in which guide index is expressed as a function of frequency, has been developed. In practical optical waveguide designing and in calculating the propagation mode, this equation will be used more conveniently than the previous one. To expedite the design of the waveguide, we then solve the eigenvalue equation of a slab waveguide, which is sufficiently accurate for practical purpose.

발전기 모델링 정도에 의한 고유치 일차${\cdot}$이차 감도계수 비교 (Comparison of the first and the second order eigenvalue sensitivity coefficients affected by generator modeling)

  • 김덕영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 A
    • /
    • pp.345-347
    • /
    • 2004
  • In small signal stability analysis of power systems, eigenvalue analysis is the most useful method and the detailed modeling of generator has an important effect to the eigenvalues. Generator full model is used for precise dynamic analysis of generators and controllers while two-axis model is used for multi-machine systems because of the reduced order of the state matrix. Also, the eigenvalue sensitivity coefficients are used for optimizing controller parameters to improve system stability. This paper compare the first and second order eigenvalue sensitivity coefficients of controllers using generator full model with those of two-axis model. As a result of an example, the estimated eigenvalues using the first and the second eigenvalue sensitivity coefficients using generator full model is very close to those of state matrix. Also the error ratios throughout a wide range of controller parameters is less than $1\%$.

  • PDF

유체 이송 연직 외팔 송수관의 고유치분기와 플러터 모드에 미치는 중력 효과 (Gravitational Effect on Eigenvalue Branches and Flutter Modes of a Vertical Cantilevered Pipe Conveying Fluid)

  • 류시웅;신광복;류봉조
    • 한국정밀공학회지
    • /
    • 제23권4호
    • /
    • pp.67-74
    • /
    • 2006
  • The paper presents gravitational effect on eigenvalue branches and flutter modes of a vertical cantilevered pipe conveying fluid. The eigenvalue branches and modes associated with flutter of cantilevered pipes conveying fluid are fully investigated. Governing equations of motion are derived by extended Hamilton's principle, and the related numerical solutions are sought by Galerkin's method. Root locus diagrams are plotted for different values of mass ratios of the pipe, and the order of branch in root locus diagrams is defined. The flutter modes of the pipe at the critical flow velocities are drawn at every one of the twelfth period. The transference of flutter-type instability from one eigenvalue branches to another is investigated thoroughly.

말단질량을 갖는 외팔 송수관의 고유치 분기와 플러터 모드 (Eigenvalue Branches and Flutter Modes of a Cantilevered Pipe Conveying Fluid and Having a Tip Mass)

  • 류봉조;류시웅;이종원
    • 한국소음진동공학회논문집
    • /
    • 제13권12호
    • /
    • pp.956-964
    • /
    • 2003
  • The paper describes the relationship between the eigenvalue branches and the corresponding flutter modes of cantilevered pipes with a tip mass conveying fluid. Governing equations of motion are derived by extended Hamilton's principle, and the numerical scheme using finite element method is applied to obtain the discretized equations. The flutter configurations of the pipes at the critical flow velocities are drawn graphically at every twelfth period to define the order of quasi-mode of flutter configuration. The critical mass ratios, at which the transference of the eigenvalue branches related to flutter takes place. are definitely determined. Also, in the case of haying internal damping, the critical tip mass ratios, at which the consistency between eigenvalue braches and quasi-modes occurs. are thoroughly obtained.

An Eigenvalue Method Used in Impedance Computed Tomography

  • Li, Mingji;Uchiyama, Akihiko
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1998년도 제13차 학술회의논문집
    • /
    • pp.85-88
    • /
    • 1998
  • We have developed an eigenvalue method for impedance computed tomography to improve the ill-conditioning problem. We have compared the performance of this method and the balancing method by computer simulations. As a result, it was proved that this method is better than the balancing method very much. It was found that the initial value condition is not so severe to obtain good images.

  • PDF

Advances in solution of classical generalized eigenvalue problem

  • Chen, P.;Sun, S.L.;Zhao, Q.C.;Gong, Y.C.;Chen, Y.Q.;Yuan, M.W.
    • Interaction and multiscale mechanics
    • /
    • 제1권2호
    • /
    • pp.211-230
    • /
    • 2008
  • Owing to the growing size of the eigenvalue problem and the growing number of eigenvalues desired, solution methods of iterative nature are becoming more popular than ever, which however suffer from low efficiency and lack of proper convergence criteria. In this paper, three efficient iterative eigenvalue algorithms are considered, i.e., subspace iteration method, iterative Ritz vector method and iterative Lanczos method based on the cell sparse fast solver and loop-unrolling. They are examined under the mode error criterion, i.e., the ratio of the out-of-balance nodal forces and the maximum elastic nodal point forces. Averagely speaking, the iterative Ritz vector method is the most efficient one among the three. Based on the mode error convergence criteria, the eigenvalue solvers are shown to be more stable than those based on eigenvalues only. Compared with ANSYS's subspace iteration and block Lanczos approaches, the subspace iteration presented here appears to be more efficient, while the Lanczos approach has roughly equal efficiency. The methods proposed are robust and efficient. Large size tests show that the improvement in terms of CPU time and storage is tremendous. Also reported is an aggressive shifting technique for the subspace iteration method, based on the mode error convergence criteria. A backward technique is introduced when the shift is not located in the right region. The efficiency of such a technique was demonstrated in the numerical tests.

의사스펙트럴법을 이용한 원형 Mindlin 평판의 동적특성 해석 (Eigenvalue Analysis of Circular Mindlin Plates Using the Pseudospectral Method)

  • 이진희
    • 대한기계학회논문집A
    • /
    • 제26권6호
    • /
    • pp.1169-1177
    • /
    • 2002
  • A study of fee vibration of circular Mindlin plates is presented. The analysis is based on the pseudospctral method, which uses Chebyshev polynomials and Fourier series as basis functions. It Is demonstrated that rapid convergence and accuracy as well as the conceptual simplicity could be achieved when the pseudospectral method was apt)lied to the solution of eigenvalue problems. Numerical examples of circular Mindlin plates with clamped and simply supported boundary conditions are provided for various thickness-to-radius ratios.

AESOPS 알고리즘의 고유치 반복계산식과 Newton Raphson법과의 비교연구 (A comparative study on the iterative eigenvalue calculation method in AESOPS algorithm and Newton Raphson Method)

  • 김덕영;권세혁
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 추계학술대회 논문집 학회본부A
    • /
    • pp.259-262
    • /
    • 1998
  • This paper presents a new eigenvalue calculation methods in AESOPS algorithm. The source program of the AESOPS algorithm is modified to practice in PC environment. Window95 is used as an operating system of PC and MicroSoft Power Station is used to compile the fortran source program. The heuristically approximated eigenvalue calculation method of the AESOPS algorithm is transformed to the Newton Raphson Method which is largely used in the nonlinear numerical analysis. The new methods are developed from the AESOPS algorithm and thus only a few calculation steps are added to practice the proposed algorithm.

  • PDF

음향 공동의 고정밀도 고유치 해석을 위한 새로운 MNDIF 법 정식 개발 (New Formulation of MNDIF Method for Eigenvalue Analysis of Acoustic Cavities)

  • 강상욱
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2013년도 추계학술대회 논문집
    • /
    • pp.658-663
    • /
    • 2013
  • A new formulation of the MNDIF method is introduced to extract highly accurate eigenvalues of concave acoustic cavities with arbitrary shapes. It is said that the MNDIF method cannot yield accurate eigenvalues for concave cavities. To overcome this weak point, a new approach of dividing a concave cavity into two convex domains is proposed. The validity of the proposed method is shown through a case study.

  • PDF

연속법에 의한 판구조 고유진동수의 민감도 해석 (Eigenvalue design sensivity analysis of structure using continuum method)

  • 이재환;장강석;신민용
    • 한국해양공학회지
    • /
    • 제11권1호
    • /
    • pp.3-9
    • /
    • 1997
  • In this paper, design sensivity of plate natural frequency is computed for thickness design variables. Once the variational equation is derived from Lagrange quation using the virtual displacement, governing energy bilinear form is obtained and sensivity equation is formulated through the first variation. Natural frequency is obtained using the commercial FEM code and the accuracy of sensivity is verified by finite difference. The accuracy of natural frequency and sensivity improves for the fine mesh model.

  • PDF