• Title/Summary/Keyword: eigenvalue approach

Search Result 177, Processing Time 0.022 seconds

Automated Design Method for Multi-domain Engineering Systems (멀티-도메인 공학시스템의 자동설계방법)

  • 서기성;박세현
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.6
    • /
    • pp.1218-1227
    • /
    • 2004
  • Multi-domain engineering systems include electrical, mechanical, hydraulic, pneumatic, and thermal components, making it difficult to design a system because of their complexity and inter domain nature. In order to obtain an optimal design, a unified design approach for each domain and an automated search method are required. This paper suggests a method for automatically synthesizing designs for multi-domain systems using the combination of bond graph that is domain independent and genetic programming that is well recognized as a powerful tool for open-ended search. To investigate the effect of proposed approach, an eigenvalue design problem is tested for some sample target sets of eigenvalues with different embryos.

Design of BAM using an Optimization approach (최적화기법을 이용한 BAM의 설계)

  • 권철희
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.2
    • /
    • pp.161-167
    • /
    • 2000
  • In this paper, we propose a design method for BAMs(bidirectiona1 associative memories) which can perform the function of bidirectional association efficiently. Based on the theoretical investigation about the properties of BAMs, we first formulate the problem of finding a BAM that can store the given pattern pairs as stable states with high error correction ratio in the form of a constrained optimization problem. Next, we transform the constrained optimization problem into a GEVP(genera1ized eigenvalue problem), which can be solved by recently developed interior point methods. The applicability of the proposed method is illustrated via design examples.

  • PDF

Structure Optimization FEA Code Development Under Frequency Constraints by Using Feasible Direction Optimization Method (유용방향법 최적화 알고리즘을 사용한 고유진동수에 대한 구조 최적설계 FEA 모듈 개발)

  • Cho, Hee Keun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.1
    • /
    • pp.63-69
    • /
    • 2013
  • In order to find the optimum design of structures that have characteristic natural frequency range, a numerical optimization method to solving eigenvalue problems is a widely used approach. However in the most cases, it is difficult to decide the accurate thickness and shape of structures that have allowable natural frequency in design constraints. Parallel analysis algorithm involving the feasible direction optimization method and Rayleigh-Ritz eigenvalue solving method is developed. The method is implemented by using finite element method. It calculates the optimal thickness and the thickness ratio of individual elements of the 2-D plane element through a parallel algorithm method which satisfy the design constraint of natural frequency. As a result this method of optimization for natural frequency by using finite element method can determine the optimal size or its ratio of geometrically complicated shape and large scale structure.

Two-dimensional Unsteady Thermal Stresses in a partially heated infinite FGM Plate (부분 가열된 무한 경사기능재료 판의 2차원 비정상 열응력)

  • Kim, Kui-Seob
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.15 no.2
    • /
    • pp.9-17
    • /
    • 2007
  • A Green's function approach based on the laminate theory is adopted for solving the two-dimensional unsteady temperature field and the associated thermal stresses in an infinite plate made of functionally graded material (FGM). All material properties are assumed to depend only on the coordinate x (perpendicular to the surface). The unsteady heat conduction equation is formulated into an eigenvalue problem by making use of the eigenfunction expansion theory and the laminate theory. The eigenvalues and the corresponding eigenfunctions obtained by solving an eigenvalue problem for each layer constitute the Green's function solution for analyzing the two-dimensional unsteady temperature. The associated thermoelastic field is analyzed by making use of the thermal stress function. Numerical analysis for a FGM plate is carried out and effects of material properties on unsteady thermoelastic behaviors are discussed.

  • PDF

The Wave Propagation in transversely isotropic composite laminates (가로 등방성 복합재료의 파동전파에 관한 연구)

  • Kim Hyung-Won
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.422-425
    • /
    • 2005
  • In an transversely isotropic composite laminates, the velocities, the particle directions and the amplitudes of reflected and transmitted waves were obtained using the equation of motion, the constitutive equation, and the displacement equation expressed by wave number and frequency Eigenvalue problem involving a velocity was solved by Snell's law. Finally, the results were confirmed by T300 Carbon fiber/5208 Epoxy materials. This approach could be applied to the detection of flaws in a transversely isotropic composite laminates by the water immersion C-scan procedure.

  • PDF

Modeling of the State Transition Equations of Power Systems with Non-continuously Operating Elements by the RCF Method

  • Kim, Deok-Young
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.4
    • /
    • pp.344-349
    • /
    • 2005
  • In conventional small signal stability analysis, the system is assumed to be invariant and the state space equations are used to calculate the eigenvalues of the state matrix. However, when a system contains switching elements such as FACTS equipments, it becomes a non-continuous system. In this case, a mathematically rigorous approach to system small signal stability analysis is performed by means of eigenvalue analysis of the system's periodic transition matrix based on the discrete system analysis method. In this paper, the RCF (Resistive Companion Form) method is used to analyze the small signal stability of a non-continuous system including switching elements. Applying the RCF method to the differential and integral equations of the power system, generator, controllers and FACTS equipments including switching devices should be modeled in the form of state transition equations. From this state transition matrix, eigenvalues that are mapped into unit circles can be computed precisely.

A Time-Derivative Preconditioning Method for Compressible Flows at All Speeds (Preconditioning을 이용한 전속도 영역에 대한 압축성 유체유동해석)

  • 최윤호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.7
    • /
    • pp.1840-1850
    • /
    • 1994
  • Enhancement of numerical algorithms for low speed compressible flow will be considered. Contemporary time-marching algorithm has been widely accepted and applied as the method of choice for transonic, supersonic and hypersonic flows. In the low Mach number regime, time-marching algorithms do not fare as well. When the velocity is small, eigenvalues of the system of compressible equations differ widely so that the system becomes very stiff and the convergence becomes very slow. This characteristic can lead to difficulties in computations of many practical engineering problems. In the present approach, the time-derivative preconditioning method will be used to control the eigenvalue stiffness and to extend computational capabilities over a wide range of flow conditions (from very low Mach number to supersonic flow). Computational capabilities of the above algorithm will be demonstrated through computation of a variety of practical engineering problems.

Flexible Eigenstructure Assignment: an Optimization Approach (유연 고유구조 지정기법: 최적화 접근법)

  • 김신종;최재원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.10-10
    • /
    • 2000
  • Eigenstructure assignment is a typical method with the capability of the consideration of the specifications in time-domain in designing a 1]near control system. In general eigenstructure assignment such that all the desired eigenvalues are exactly assigned to the closed-loop system, the assignment of the eigenvectors is very restrictive. However if the arbitrary point in a certain area as an eigenvalue is allowed to be assigned t the closed-loop system, the assignment of the eigenvector corresponding to this eigenvalue can be much less restrictive. In this paper, the flexible eigenstructure assignment that can assign more closely the desired eigenvector to the closed-loop system by using an optimization technique is proposed.

  • PDF

Frequency Optimization Using by Feasible Direction Method (유용방향법에 의한 고유진동수 최적화)

  • 조희근;박영원
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.410-415
    • /
    • 2000
  • In this paper feasible direction method which is one of the optimization method is adopted to natural frequency optimization. In order to find the optimum design of structures that have characteristic natural frequency range, a numerical optimization method to solving eigenvalue problems is a widely used approach. However most cases, it is difficult to decide the accurate thickness and shape of structures that have allowable natural frequency in design constraints. Parallel analysis algorithm involving the feasible direction optimization method and Rayleight-Ritz eigenvalue solving method is developed. The method is implemented by using finite element method. It calculated the optimal thickness and the thickness ratio of each element of 2-D plane element through the parallel algorithm method which satisfy the design constraint of natural frequency.

  • PDF

The Wave Propagation in Transversely Isotropic Composite Laminates (가로 등방성 복합재료의 초음파에 관한 연구)

  • Kim Hyung-Won
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.2
    • /
    • pp.62-69
    • /
    • 2006
  • In transversely isotropic composite laminates, the velocities, the particle directions and the amplitudes of reflected and transmitted waves were obtained using the equation of motion, the constitutive equation, and the displacement equation expressed by wave number and frequency. Eigenvalue problem involving a velocity was solved by Snell's law. Finally, the results were confirmed by 7300 Carbon fiber/5208 Epoxy materials. This approach could be applied to the detection of flaws in transversely isotropic composite laminates by the water immersion C-scan procedure.