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The Wave Propagation in transversely isotropic
composite laminates

Hyung-Won Kim*

ABSTRACT

In an transversely isotropic composite laminates, the velocities, the particle directions and the
amplitudes of reflected and transmitted waves were obtained using the equation of motion, the
constitutive equation, and the displacement equation expressed by wave number and frequency.
Eigenvalue problem involving a velocity was solved by Snell's law. Finally, the results were
confirmed by T300 Carbon fiber/5208 Epoxy materials. This approach could be applied to the
detection of flaws in a transversely isotropic composite laminates by the water immersion C-scan
procedure.
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1. Introduction many cases. However, one is concerned with
more subtle defects which are difficult to
identify with conventional data analysis
procedures (e.g., porosity, local variation in
fiber orientation, segregation of reinforcing
fibers, etc.). Since the defects will principally
affect the local moduli, ultrasonic velocity
measurements are quite useful in analysing

Immersion C-scan procedure has become the
method of identifying gross composite defects
by an analysis of the reflected wave
amplitudes. This procedure works well in
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these types of problems. Further, since fiber
reinforced composites are anisotropic materials,
one would ideally like to examine directional
dependence on the properties by measuring all
pertinent elastic moduli. Previous investigators
have performed the ultrasonic tests required to
completely characterize all nine elastic moduli
for orthotropic materials [1-2]. However, this
procedure is rarely used in practice for several
important reasons. These tests were all
conduced using contact transducers at normal
incidence. This approach, while useful for
measuring at a given point, is unsuitable for
the scanning of large parts due to the
difficulty of maintaining shear coupling as the
transducer is scanned. An alternative approach
is to use immersion transducer with mode
conversion to generate the required waves
additional to  the longitudinal  wave.
Unfortunately, the mode conversion approach
to the generation of waves in an anisotropic
media is significantly more complicated than
the isotropic case. However, a considerable
degree of simplification can be achieved by
restricting to the special case of a
unidirectional quasi  transversely isotropic
composite materials. The principal objective of
this work was to develop a simplified method
for analyzing reflection-refraction phenomena
in transversely isotropic materials for arbitrary
angles of incidence. Finally, a method was
determined which was rapid, accurate and
sufficiently compact to be implemented on a
laboratory microcomputer so that it would be
useful for the detection of flaws. The results
were confirmed by T300 Carbon fiber/5208
Epoxy materials.

2. Theory
In an anisotropic media, the equation of motion is
described as follows.

05,5t pb; = puy @
The constitutive equation is
O = Cijui€ @
And the strain and the displacement relatinship is
1
€= 5(ui,j+ujﬂ.) ©)

Substituting equations (2) and (3) into equation (1)
without body force gives the following equation.

PU; = Cijpatiy, g @

For the cases to be study, the wave vector for the
incident wave lies in a plane either parallel or
perpendicular to the fiber reinforcement. The incident
wave may be represented as

u; = Aya;
k=wave number
{=wave normal vector
w =fraquency
A =amplitude
a =polarization vector
Substituting eq. (5) into eq. (4) gives as

- pw’u; = = k2lil]‘)ula ©)
Rearranging eq.(6) gives the governing equation as

(A= po*D)a=0 4
J=identity matrix
v=velocity
A = Cijl.:lljjl-

ei(kl,'l:j—wt)

)
where,

where,

3. Application to Orthotropic Medium
The wave normal for the refracted waves in the

orthotropic media is
cos§’
=0
inf"

Once the wave normal vector is found, A can be
solved In solving the eigenvalue problem, the most
difficult problem is that the directional cosines of the
refracted wave can not be determined from Spell’s law
because of the directional dependence of the wave
velocities.
Defining the slowness vector as
m= k=]
w v
where, k=wave vector=| k|/
k = | k|=wave number
I =wave normal.
The slowness surface represents the locus of the
endpoints of the slownes vectors. For as anisotropic
media, there are three distinct sheets of arbitrary
shape. The shape of slowness surface is an important
factor in determining the nature of reflected waves
and refracted waves. The problem unde corsideration
consists of a plane longitudinal wave in water incident
upon the boundary of a unidirectional composite
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panel. For the cases to be studied, the wave vector for
the incident wave lies in a plane either parallel or
perpendicular to the fiber reinforcement.
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Fig. 1 Experimental arrangement of the

oblique wave in the water

With this geometry, the incident wave may be
represented as
1;;1: ;ieiw""(mi."xk— t)
Similarly, the reflected longitudinal wave can be
represented as
{1;‘.’6: E:eeiw'"(m;_’zk—t)
For the transmitted waves, we have

i 7w (mizm,—t)
u'=Ae K

where, the superscript i is used to differentiate
between the transmitted work. In order to satisfy
the boundary conditions at the interface, the
frequencies of all waves must be equal,

In the case that
!
v=|0
0

and,

where, the negative sign in the slowness vector of

the reflected wave is included to indicate that it is
propagating away from the interface, then we have
the Snell’s law as

sing™ _ sinf"" _ sinf (10)
Uy UV vy
4. Eigenvalue Problem
X2
X3/ X1
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Fig. 2 Coordinate system in
unidirectional  reinforced
composites

We can rewrite the Snell’s law as
. i v in
sing' = —sinfd™" = kv,
w
for each mode, then the problem becomes the
Eigenvalue problem for v,. Since the pure mode

shear wave could not be excited in the
experimental arrangement, we restrict our attention
to the characteristic equation of remaining two
waves as

[‘311(1 - (kvi)2) +055(kvi)2 _p'Uz?
[0.55(1 - (k”i)Z) +CS3(kvi)2 "Pvz?
—(e13+¢55) (k) * (1= (kv;)?) =0

This is a simple equation for v? which may
be solved numerically for the two real roots.

5. Amplitude considerations

The particle displacements for the incident
wave are represented as

—_ cos 6™ " )
u,=Ao| 0 | (cosf"z +sind"z — wt)

ing*"

Similarly, the particle displacements for the
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reflected wave are

— cosf’" L ‘ _
u,,=A,| 0 % (—cosfxr+sind"z— wt)

ing"™*

For wave propagation in the composite,
similar  expressions for  the  generated
quasilongitudinal and quasitransverse waves
are
(e
o= Ao 0 | % (cos89z+5sind%z — wt)
Q U oo

a3

aQ
—_ 1 ikor r
ugr— A 0 e (COSOQ Tz +sing? —wt)
@ Q

QT

a3
Three boundary conditions at the fluid solid
interface are required to calculate the retlection
and transmission coefficients at the interface.
Those yields three equations in three
unknowns which can be solved for the
reflection and transmission coefficients.

6. Results considerations

T300 Carbon fiber/5208 FEpoxy composite was
studied for wave propagation at oblique angles
The oblique incident beam was projected to a
unidirectionally ~ reinforced  composites in  the
reinforcemment plane parallel and perpendicular to the
fiber axis.

A) x-y plane (isotropic plane)

(1) longitudinal wave slowness radius:

1
R =—= L = 0.4mm
U1 ‘1
(2) SV slowness radius:
1 p
Rgy=—= 4/ — =0.5mm
SV vy Caq
(3) SH slowness radius:
1
Rgy = —= | L= =0.76mm
U3 Co6
B) x-z plane
() SH wave
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SH 448100 + cgec0s%0

*10" 3mm

— 14
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(2 quasilongjtudinal velocity and quasitransverse

velocity
RQL \/
M+ \/ —4N
R
or(0 \/ M- — 4N

M= ¢y cos 9+ c33510%0 + 044
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Fig. 3 The slowness surface
(transversely isotropic plane)
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Fig. 4 The slowness surface
(parallel to fiber)

7. Conclusions

Wave propagation features in transversely isotropic
materials were evaluated for a microcomputer based
technique. Using oblique angles of incidence, important
information about laminate properties could be
obtained. This approach may be used in a scarning
mode to detect local flaws of a big composite motor
case if the shell effect does not play an important role.
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