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Modeling of the State Transition Equations of Power Systems
with Non-continuously Operating Elements by the RCF Method

Deok Young Kim t

Abstract - In conventional small signal stability analysis, the system is assumed to be invariant and
the state space equations are used to calculate the eigenvalues of the state matrix. However, when a
system contains switching elements such as FACTS equipments, it becomes a non-continuous system.
In this case, a mathematically rigorous approach to system small signal stability analysis is performed
by means of eigenvalue analysis of the system’s periodic transition matrix based on the discrete system
analysis method. In this paper, the RCF (Resistive Companion Form) method is used to analyze the
small signal stability of a non-continuous system including switching elements. Applying the RCF
method to the differential and integral equations of the power system, generator, controllers and
FACTS equipments including switching devices should be modeled in the form of state transition
equations. From this state transition matrix, eigenvalues that are mapped into unit circles can be

computed precisely.
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1. Introduction

In modern power systems, FACTS equipments are
widely used for an effective power flow control that
enables the maximization of transferred power capability
and improvement in the economic loading of existing
transmission facilities. This trend is facilitated by the
technical improvement of high power electronic devices.
Aside from these attractive features of FACTS equipment,
they also cause negative effects such as distortion of the
oscillation modes and newly generated unstable modes
after switching actions. These effects are generated by the
switching operation of power electronic devices {1, 2].

In conventional small signal stability analysis, the
system is assumed to be invariant and the state space
equations are used to calculate the eigenvalues of the state
matrix. Compared to the trarnsient stability analysis method,
which shows mixed results of oscillation modes in time
domain, the eigenvalue analysis method has a merit to
identify each oscillation mode according to state variables
and present useful information such as eigenvector and
sensitivity coefficients.

However, when a system contains switching devices
such as FACTS equipment, it becomes a non-continuous
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system. In this case, a mathematically rigorous approach to
system small signal stability analysis is by means of
eigenvalue analysis of the system’s periodic transition
matrix based on the discrete system analysis method. The
RCF method can be applied to not only continuous systems
but also non-continuous systems. The eigenvalues from the
conventional state space method and RCF method are
exactly the same in continuous systems. But in non-
continuous system analysis, the RCF method has a merit of
detailed analysis in fluctuations of oscillation modes and
newly generated unstable oscillation modes after switching
actions. Therefore, the RCF method is a very powerful one
to analyze a non-continuous system including switching
devices such as FACTS equipment in small signal stability
analysis [3, 4].

In this paper, the Resistive Companion Form (RCF)
method is used to analyze the small signal stability of a
non-continuous system including switching devices. To
apply the RCF method in power system small signal
stability problems, state transition equations and state
transition matrices of power system equipment such as the
generator, exciter, governor and power system stabilizer
are presented. From these state transition matrices,
eigenvalues, which are mapped into unit circles, can be
computed. To demonstrate the relative merits of the
proposed method, a comparison of system eigenvalues
from the conventional state space method and the RCF
method are presented for complex systems with two
switching devices.
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2. Resistive Companion form (RCF) Method

For 'small signal stability analysis, any power system
equipment is described with a set of algebraic differential
integral equations. These equations can be arranged in the
following general form:

{i(t)] _[ A0, 70,90, y(0),u) M)
L2 (00, YO, (0), y(0),u(0))

where,

i(?) : vector of terminal currents,

v(¢) : vector of terminal voltages,

y(t) : vector of device internal state variables,
u(¢) : vector of independent controls

This form includes two sets of equations, which are
named external equations and internal equations
respectively. The terminal currents appear only in the
external equations and the device state variables consist of
two sets: external states (i.e. v(¢)) and internal states (i.e.
y(@0).

An example of the above modeling is a switching device
represented with linear elements. Between switching

actions, the model is described with a linear differential
equation of the form:
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Equation (2) is integrated using a suitable numerical

integration method such as the trapezoidal method.

Assuming an integration time step h, the result of the
integration is manipulated to be in the following form:
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To consider the connectivity constraints among the
devices of the system, Kirchhoff’s current law is applied to
each node of the system. Application of KCL at each node

will result in the elimination of all device terminal currents.
The overall network equation has the form:
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Note that the above equation represents the state
transition equation for the entire system from time t-h to
time t. The above linear equation form is the resistive

companion form that results from the trapezoidal
integration method. The transition matrix is:
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Eigenvalue analysis of the transition matrix provides the
small signal stability of the system.

In general, we are interested in the transition matrix over
at least one period of operation of the system. The
proposed method provides an algorithm for the recursive
computation of the transition matrix over a desired time
period and around the operating conditions of the system.
The entire transition matrix over a desired time period can
be done by sequential substitution of the transition matrix
state variables in each time step. The overall transition
matrix has the form:

(DT(tnﬂt()) = (Dn(tn’tn—\) ’ (Dn—l(tn—1>tn—2)
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where, @,(t,,7,,) means the transition matrix of the

specified time step.

The location of an eigenvalue of the transition matrix
indicates the nature of the mode. In order to interpret the
eigenvalues in terms of modal damping factors and natural
frequencies, we can use the eigenvalue mapping between
the transition matrix eigenvalue and state space eigenvalue.
It is known that:

Ay, = e’ =T ®)

where, A,and A, are the eigenvalues of the transition

matrix (i.e. discrete system) and state space matrix (i.e.
continuous system) respectively, T is the 60Hz period, and
Ac =-a+ ] ﬂ '

Therefore the eigenvalues of the transition matrix have
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the effect of mapping those of the state space matrix to the
unit circle. It implies that highly damped modes are
identified with eigenvalues near the center of the unit circle,
stable oscillatory modes are identified with eigenvalues
within the unit circle and unstable modes arc identified
with eigenvalues outside the unit circle.

3. Application Examples

To compare the eigenvalues of the transition matrix and
the state space matrix, complex systems with two
switching devices are investigated. The parameters of the
application system are:

R, =20[Q], R, = 40[Q], R, =30[Q], L, = 0.05[H],
L, =0.1[H],C, =0.2[F],V, =110[V'], s = 0.0001 sec

S R SW, R,

o — AN A/ = b A .
R <Z

. + <

V. ) L V., =

s L 3 e j )
liLl ial - L, _é lll‘z
| :

Fig. 1 Complex system with switching elements
3.1 RCF modeling of complex systems
Case 1 (SW 1: close, SW 2: open)

From the circuit diagram, the state transition equations
are:

From the above equations, the transition matrix can be
calculated as (6).

3.2 Comparison of eigenvalues from state space
methoed and RCF method

The eigenvalues of state space method and transition
matrix are compared from Table 1 to Table 4. In this
example, time step h is also defined as .0001 sec and all the
eigenvalues of the state space method are transformed into
unit circles in Table 2 and Table 3 while all the eigenvalues
of the RCF method are transformed into s-planes in Table
1 and Table 4.

Table 1 Eigenvalues of Case 1 and Case 2 by state space
matrix method (s-plane)

Mode Case 1 Case 2
1 -0.16675 -0.29187
2 -299.83323 -299.83312
3 -400.0 -799.87498

In Table 1, all the eigenvalues of the state space method
in Case 1 and Case 2 are shown in s-plane. It is clear that
there are no relations between the eigenvalues of Case 1
and Case 2. This means that it is impossible to analyze the
effects of switching actions between Case 1 and Case 2 by
the state space method.

Table 2 Comparison of eigenvalues by state space matrix
method and RCF method
Eigenvalues of T=0.0006sec
Mode (0< T <0.0006s¢c)
State Space Method RCF Error
S-plane | Unit Circle | Method | Ratio (%)

1 -0.16675 0.99989 0.99989 0.0
-299.8332 | 0.83535 0.83534 | 0.00134

3 ]-399.9999 | 0.78662 0.78660 | 0.00318
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Case 2 (SW 1: open, SW 2: close)
From the circuit diagram, the state transition equations

are:
e s
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In Table 2, the eigenvalues are calculated at t=0.0006
sec in Case 1 (SW1 is closed and SW2 is opened), which is
from 0 to 0.0006 sec with a time step of 0.0001 sec. It is
assumed that the errors of the tranmsition matrix by
sequential substitution of state variables in each time step

Table 3 Comparison of eigenvalues by state space matrix

method and RCF method
Eigenvalues of T=0.001 sec
Mode (0<T <0.001sec)

State Space Method RCF Error

S-plane | Unit Circle | Method | Ratio (%)
1 -0.29187 0.99988 | 0.99988 | 0.00089
2 -299.83312 | 0.88697 | 0.88697 0.0
3 -799.87498 | 0.72618 | 0.72606 | 0.01706
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will be the largest at 0.0006 sec. In this case the largest
error ratio between state space method and RCF method is
0.00318%, which means that the eigenvalues from the two
methods are almost the same.

In Table 3, the eigenvalues are calculated at t==0.001 sec
in Case 2 (SW1 is opened and SW2 is closed), which is
from 0.0006 to 0.001 sec with a time step of 0.0001 sec. It
is also assumed that the errors of transition matrix by
sequential substitution of state variables in each time step
will be the largest at 0.001 sec. In this case the largest error
ratio between state space method and RCF method is
0.01706%, which means that the eigenvalues from the two
methods are almost the same.

Table 4 Eigenvalues of RCF method including
effect (s-plane)

switching

Mode| T=.0006 T=.0007 | T=0008 | T=.0009 T =001
1 —.16675 | —.1711607 | —.1792794 | —.1876583 | —.1954392
2 | -299.8332 | ~299.8555 | ~299.8555 | —299.8555 | —299.8555
3 —399.9999 | —457.2448 | —500.1340 | —533.4900 | -560.1738

The fluctuations of eigenvalues after switching action by
RCF analysis method in each time step are shown in Table
4. All the eigenvalues are transformed into s-planes. To
compare the eigenvalues of Tables 1 and 4, the loci of
eigenvalues in Table 4 by the RCR method in Case 2 start
from those of 0.0006 sec and become closer to those of
0.001 sec in Table 1. It is clear that the fluctuation of
eigenvalues in each time step in Table 4 is caused by
switching action. These results are impossible to be
analyzed by the state space method. To compare the
eigenvalues of state space method and RCF method at
0.001 sec, mode 2 is almost identical. But modes 1 and 3 of
the state space method and RCF method are very different
and the errors of analyzed results are critical.

4. RCF modeling of power system equipments

For small signal stability of power systems with non-
continuous switching devices by the RCF method, the
generator, exciter, PSS and governor are modeled into state
transition equations and the state transition matrix of these
devices are presented.

4.1 Generator full model
The generator full model is used for detailed analysis of

generator characteristics or controller actions in one
machine infinite bus system.
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Fig. 2 Equivalent circuit of full modeled generator

The state transition equations of the generator full model

are:
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4.2 Generator two-axis model
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The generator two-axis model is generally used for multi
machine system analysis to reduce computing time and

load.

Fig. 3 Equivalent circuit of two-axis modeled generator

The state transition equations of the generator two-axis

model are:
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4.3 IEEE type 1 exciter model

IEEE Type 1 is the most generally used exciter model
and the block diagram is shown in Fig. 4.

K,S

1+7,.8 -
Fig. 4 Block diagram of IEEE Type 1 Exciter

The state transition equations of IEEE Type 1 exciter
are:
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4.4 Governor model

The block diagram of governor model used is in Fig. 5.
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Fig. 5 Block diagram of governor

The state transition equations of the governor model are:
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4.5 Power system stabilizer model

The block diagram of power system stabilizer model
used is shown in Fig. 6.

X, T+7,,8 | %
— —

1+75,8 | %
1+7,,S

1+7,S

® W;STQS
Ll +748

Fig. 6 Block diagram of power system stabilizer

The state transition equations of PSS are:
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4. Conclusion

The state transition equations of power system
equipment are presented for applying the RCF method to
the systems with non-continuous operating switching
devices in small signal stability analysis. The RCF method
can be applied to not only continuous systems but also
non-continuous systems. The eigenvalues from conven-
tional state space method and RCF method are exactly the
same in continuous systems. But in non-continuous system
analysis, the RCF method has a merit of detailed analysis
in fluctuations of oscillation modes and newly generated
unstable oscillation modes after switching actions. There-
fore, the RCF method is a very powerful one to analyze
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non-continuous systems including switching devices such
as FACTS equipments in small signal stability analysis of
power systems.
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