• Title/Summary/Keyword: eigenmodes

Search Result 66, Processing Time 0.027 seconds

Structural Damage Detection Based on Composite Data of Static and Modal Test (정적변위와 진동모우드 특성치의 합성자료를 이용한 구조물의 손상도 추정)

  • 정범석;한종석
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.10a
    • /
    • pp.147-155
    • /
    • 1996
  • The purpose of present study is to propose a improved damage detection and assessment algorithm that has its basis on the method of system identification. In this approach, the complete sets of modes or displacements are not needed since the error response function involves only the difference between components of those vectors. The present approach also allows the use of composite data which is constitute of static displacements and eigenmodes. The effectiveness of the proposed statistical system identification method is investigated through simulated studies. A series of tests for predetermined damaged cantilever beam and bowstring truss structure have been conducted to verify the proposed method.

  • PDF

Study on the Time Response of Reduced Order Model under Dynamic Load (동하중 하에서 축소 모델의 구성과 전체 시스템 응답과의 비교 연구)

  • 박수현;조맹효
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.11-18
    • /
    • 2004
  • In this paper, an efficient model reduction scheme is presented for large scale dynamic systems. The method is founded on a modal analysis in which optimal eigenvalue is extracted from time samples of the given system response. The techniques we discuss are based on classical theory such as the Karhunen-Loeve expansion. Only recently has it been applied to structural dynamics problems. It consists in obtaining a set of orthogonal eigenfunctions where the dynamics is to be projected. Practically, one constructs a spatial autocorrelation tensor and then performs its spectral decomposition. The resulting eigenfunctions will provide the required proper orthogonal modes(POMs) or empirical eigenmodes and the correspondent empirical eigenvalues (or proper orthogonal values, POVs) represent the mean energy contained in that projection. The purpose of this paper is to compare the reduced order model using Karhunen-Loeve expansion with the full model analysis. A cantilever beam and a simply supported plate subjected to sinusoidal force demonstrated the validity and efficiency of the reduced order technique by K-L method.

  • PDF

Analysis of Higher Order Modes of Waveguide Latching Phase Shifter (도파관 래칭 이상기의 고차 모드 해석)

  • 신동만;윤상원;박동철
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.8
    • /
    • pp.1145-1151
    • /
    • 1989
  • New method to calculate the characteristics of the dominant and higher order modes of waveguide latching phase shifters are presented. Due to the tensor permeability, E and H fields inside the ferrite are expanded in terms of the LSE and LSM eigenmodes of the dielectric-slab-loaded waveguide. The equivalent coupled transmission line equations on the transverse plane are derived to obtain the dispersion characteristics and the E and H field distributions. Numerical results at X-band are compared with those published previously. The derived field distributions can be used to suppress the higher order modes of the latching phase shifters, so that the phase shift from the dominant mode only contributes the performance of the phase shifters.

  • PDF

On the Fairness of the Multiuser Eigenmode Transmission System

  • Xu, Jinghua;Zhou, Ming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.6
    • /
    • pp.1101-1112
    • /
    • 2011
  • The Multiuser Eigenmode Transmission (MET) has generated significant interests in literature due to its optimal performance in linear precoding systems. The MET can simultaneously transmit several spatial multiplexing eigenmodes to multiple users which significantly enhance the system performance. The maximum number of users that can be served simultaneously is limited due to the constraints on the number antennas, and thus an appropriate user selection is critical to the MET system. Various algorithms have been developed in previous works such as the enumerative search algorithm. However, the high complexities of these algorithms impede their applications in practice. In this paper, motivated by the necessity of an efficient and effective user selection algorithm, a low complexity recursive user selection algorithm is proposed for the MET system. In addition, the fairness of the MET system is improved by using the combination of the proposed user selection algorithm and the adaptive Proportional Fair Scheduling (PFS) algorithm. Extensive simulations are implemented to verify the efficiency and effectiveness of the proposed algorithm.

Pseudospectral Analysis of Plane Poiseuille, Plane Couette and Blasius Flow (평행 Poiseuille, 평행 Couette, Blasius Flow의 준안정 해석)

  • Choi, Snag-Kyu;Chung, Myung-Kyoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.3
    • /
    • pp.319-325
    • /
    • 2003
  • We investigate the spectra and the pseudospectra in plane Poiseuille flow, plane Couette flow and Blasius flow. At subcritical Reynolds number, the spectra are lied strictly inside the stable complex half-plane, but the pseudospectra are lied in the unstable half-plane, reflecting the large linear transient growth that certain perturbations may excite. It means that the smooth flows may become to turbulent even though all the eigenmodes decay monotonically. We found that pseudospectra is one reason that causes subcritical transition in plane Poiseuille flow and plane Couette flow and bypass transition in Blasius flow.

Analysis of a coupled waveguide structure using the edge element method (변유한요소법을 이용한 결합구조를 갖는 도파관 구조의 해석)

  • Kim, Young-Tae;Kwon, Jin-Ho;Ahn, Dal;Park, Jun-Seok;Kim, Hyeong-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1999.11d
    • /
    • pp.1117-1119
    • /
    • 1999
  • An edge finite element method is applied to calculate the field distribution of a coupled waveguide structure. We compares a node based finite element method with the edge element one. For 2-d eigenvalue problems of waveguide structures, the former generates spurious eigenmodes, but the latter dose not. Using an simple rectangular waveguide, we implement both methods to obtain some results of field computation in waveguide. The paper shows that the finite element method using edge elements succeeds in suppressing spurious solutions.

  • PDF

Enhancement of Mass Transfer of an Enclosed Fluid by Time-periodic Thermal Forcing (간헐 열전달을 이용한 밀폐용기내의 물질전달 향상)

  • Kwak H. S.
    • Journal of computational fluids engineering
    • /
    • v.7 no.1
    • /
    • pp.36-43
    • /
    • 2002
  • A numerical investigation is made of unsteady double-diffusive convection of a Boussinesq fluid in a rectangular cavity subject to time-periodic thermal excitations. The fluid is initially stratified between the top endwall of low solute concentration and the bottom endwall of high solute concentration. A time-dependent heat flux varying in a square wave fashion, is applied on one sidewall to induce buoyant convection. The influences of the imposed periodicity on double-diffusive convection are examined. A special concern is on the occurrence of resonance that the fluctuations of flow and attendant heat and mass transfers are mostly amplified at certain eigenmodes of the fluid system. Numerical solutions illustrate that resonant convection results in a conspicuous enhancement of time-mean mass transfer rate.

Localized Eigenmodes in a Triangular Multicore Hollow Optical Fiber for Space-division Multiplexing in C+L Band

  • Hong, Seongjin;Oh, Kyunghwan
    • Current Optics and Photonics
    • /
    • v.2 no.3
    • /
    • pp.226-232
    • /
    • 2018
  • We propose a triangular-multicore hollow optical fiber (TMC-HOF) design for uncoupled mode-division and space-division multiplexing. The TMC-HOF has three triangular cores, and each core has three modes: $LP_{01}$ and two split $LP_{11}$ modes. The asymmetric structure of the triangular core can split the $LP_{11}$ modes. Using the proposed structures, nine independent modes can propagate in a fiber. We use a fully vectorial finite-element method to estimate effective index, chromatic dispersion, differential group delay (DGD), and confinement loss by controlling the parameters of the TMC-HOF structure. We confirm that the proposed TMC-HOF shows flattened chromatic dispersion, low DGD, low confinement loss, low core-to-core crosstalk, and low crosstalk between adjacent modes. The proposed TMC-HOF can provide a common platform for MDM and SDM applications.

Surface Plasmon Nanooptics in Plasmonic Band Gap Structures: Interference of Polarization Controlled Surface Waves in the Near Field

  • Kim, D. S.;Yoon, Y. C.;Hohng, S. C.;Malyarchuk, V.;Lienau, Ch.;Park, J. W.;Kim, J. H.;Park, Q. H.
    • Journal of the Optical Society of Korea
    • /
    • v.6 no.3
    • /
    • pp.83-86
    • /
    • 2002
  • Nanoscopic emission from periodic nano-hole arrays in thick metal films is studied experimentally. The experiments give direct evidence for SP excitations in such structures. We show that the symmetry of the emission is governed by polarization and its shape is defined the interference of SP waves of different diffraction orders. Near-Held pattern analysis combined with the far-Held reflection and transmission measurements suggests that the SP eigenmodes of these arrays may be understood as those of ionic plasmon molecules.