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Today, nearly all microelectronic devices are based on storing or flowing the electron’s charge. The electron also possesses a 
quantum mechanical property termed “spin”, that gives rise to magnetism. Electrical current is comprised of “spin-up” and 
“spin-down” electrons, which behave as largely independent spin currents. The flow of these spin currents can be controlled in 
thin-film structures composed of atomically thin layers of conducting magnetic materials separated by non-magnetic 
conducting or insulating layers. The resistance of such devices, so-called spin-valves and magnetic tunneling junctions, 
respectively, can be varied by controlling the relative magnetic orientation of the magnetic layers, giving rise to 
magnetoresistance tailored for different applications. Recent advances in generating, manipulating and detecting spin-polarized 
electrons and electrical current make possible new classes of spin based sensor, memory and logic devices, generally referred 
to as the field of spintronics. In particular, the spin-valve is a key component of all magnetic hard-disk drives manufactured 
today and enabled their nearly 1,000-fold increase in capacity over the past eight years1. The magnetic tunnel junction allows 
for a novel, high performance random access solid state memory which maintains its memory in the absence of electrical 
power. The respective strengths of these two major classes of digital data storage devices, namely the very low cost of disk 
drives and the high performance and reliability of solid state memories, may be combined in the future into a single spintronic 
memory-storage technology, the magnetic Racetrack. The Racetrack is a novel three dimensional technology which uses 
nanosecond long pulses of spin polarized current to move a series of magnetic domain walls along magnetic nanowires2. 
1. Stuart Parkin et al., Magnetically engineered spintronic sensors and memory. Proc. IEEE 91, 661-680 (2003). 
2. S. S. P. Parkin, US Patent # 6,834,005, 6,898,132, 6,920,062, 7,031,178, and 7,236,386 (2004-2007). 
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One of the nontrivial dynamic excitation modes in the magnetic vortex(MV) state of nanomagnets is the in-plane translation 
mode, which exhibits a gyrotropic motion of the vortex core(VC) around its equilibrium position with a characteristic 
eigenfrequency of several hundred MHz[1,2]. Supprisingly, we found from our previous studies[3] that bistate VC orientations 
can be selectively switched between the upward and the downward magnetizations of the VC by applying rotating magnetic 
fields or currents. From an application point of view, this property can become a key technology for information recording in a 
new type of MRAM - vortex random access memory (VRAM)[4]. 

In this presentation, in order to gain physical insight into the underlying mechanism of VC switching by in-plane rotating 
fields or spin-polarized currents, we theoretically solved the rotating eigenmodes existing in vortex gyrotropic motions in soft 
magnetic elliptical nanodots. The simple mathematical expressions were calculated by adopting rotating-mode-dependent 
dynamic susceptibility tensors using linearized Thiele equation of motion [5]. The analytical equations indicated that there exist 
two rotational eigenmodes in linear-regime steady-state vortex motions and that only one eigenmode, of either the 
counterclockwise (CCW) or clockwise (CW) rotational motion, leads to resonance. The mode showing the resonance effect is 
determined by the vortex polarization. The shape of the VC orbital motions for the two eigenmodes is determined only by the 
lateral shape of the nanodot. Additionally, the orbital radii and phases of the two eigenmodes remarkably contrast, varying 
according both to the frequency of applied currents across the vortex eigenfrequency, and the vortex polarization. On the basis 
of this theoretical work, it can be understood how linear-regime steady-state vortex motions driven by spin-polarized currents 
vary with the vortex polarization as well as the frequency of applied currents[6]. The numerical solutions of the mathematical 
expressions reveal that overall linear-regime steady-state vortex motions under arbitrary polarized oscillating currents can be 
well interpreted through the superposition of the two rotational eigenmotions. 
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