• Title/Summary/Keyword: effects of substrate

Search Result 2,018, Processing Time 0.029 seconds

Effects of Sand Blasting on TiAlN Coating on WC Hard Metal Alloy Tip (WC위 TiAlN 코팅층에 미치는 Sand Blasting 처리의 영향)

  • Lee, Han-Young
    • Tribology and Lubricants
    • /
    • v.37 no.2
    • /
    • pp.54-61
    • /
    • 2021
  • The effect of the sand blasting before TiAlN coating in the manufacture of WC hard metal alloy tips have been studied. For four different tips, according to the status of processing of the sand blasting and the coating, residual stress measurement by X-ray diffraction and several tests for mechanical properties have been conducted. The results suggest that there was no difference in static mechanical properties, such as hardness, surface roughness and elastic modulus, between two coatings. Furthermore, compressive residual stress was generated equally on their surfaces. Additionally, the compressive residual stress in substrate WC was found to increase greatly when subjected to sand blasting treatment. However, the compressive residual stress decrease after coating regardless of sand blasting treatment. Nevertheless, it is confirmed that the compressive residual stress generated in the coating after sand blasting is less than that in the non-sandblasting coating. This was attributed to the plastic deformation occurring in the WC substrate during coating after sand blasting. In contrast to the scratch test results, sand blasting was assumed to have a negative effect on the adhesion between the coating and substrate. This is because there is a high possibility of microcracks due to plastic deformation in the WC substrate under the coating after sand blasting.

Thermoelectric Properties of Bi2Te3 Films Grown by Modified MOCVD with Substrate Temperatures (개조된 MOCVD법으로 성장한 Bi2Te3 박막의 기판온도에 따른 열전 특성)

  • You, Hyun-Woo;Kwon, O-Jong;Kim, Kwang-Chon;Choi, Won-Chel;Park, Chan;Kim, Jin-Sang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.4
    • /
    • pp.340-344
    • /
    • 2011
  • Thermoelectric bismuth telluride ($Bi_2Te_3$) films were deposited on $4^{\circ}$ off oriented (001) GaAs substrates using a modified metal organic chemical vapor deposition (MOCVD) system. The effects of substrate temperature on surface morphologies, crystallinity, electrical properties and thermoelctric properties were investigated. Two dimensional growth mode (2D) was observed at substrate temperature lower than $400^{\circ}C$. However, three dimensional growth mode (3D) was observed at substrate temperature higher than $400^{\circ}C$. Change of growth mechanism from 2D to 3D was confirmed with environmental scanning electron microscope (E-SEM) and X-ray diffraction analysis. Seebeck coefficients of all samples have negative values. This result indicates that $Bi_2Te_3$ films grown by modified MOCVD are n-type. The maximum value of Seebeck coefficient was -225 ${\mu}V/K$ and the power factor was $1.86{\times}10^{-3}\;W/mK^2$ at the substrate temperature of $400^{\circ}C$. $Bi_2Te_3$ films deposited using modified MOCVD can be used to fabricate high-performance thermoelectric devices.

Effect of B2O3 Addition on Thermal, Structure, and Sealing Properties V2O5-P2O5-ZnO Glass (B2O3첨가에 따른 V2O5-P2O5-ZnO계 유리의 물성 및 구조와 봉착특성)

  • Sung, Aram;Kim, Yurian;Kim, Hyungsun
    • Korean Journal of Materials Research
    • /
    • v.26 no.10
    • /
    • pp.549-555
    • /
    • 2016
  • We have investigated a glass-forming region of $V_2O_5-P_2O_5-ZnO$ glass and the effects of the addition of modifier oxides ($B_2O_3$) to the glass systems as a sealing material to improve the adhesion between the glass frits and a soda lime substrate. Thermal properties and coefficient of thermal expansion were measured using a differential scanning calorimetry, a dilatometer and a hot stage microscopy. Structural changes and interfacial reactions between the glass substrate and the glass frit after sintering (at $400^{\circ}C$ for 1 h) were measured by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and scanning electron microscope. The results showed that the adhesion strength increases as the content of $B_2O_3$ at 5 mol% increases because of changes in the structural properties. It seems that the glass structures change with $B_2O_3$, and the $Si^{4+}$ ions from the substrate are diffused to the sealing glass. From these results, we could understand the mechanism of strengthening of the adhesion of soda lime silica substrate by ion-diffusion from the substrate to the glass.

Effect of Ion-beam Pre-treatment on the Interfacial Adhesion of Sputter-deposited Cu film on FR-4 Substrate (이온빔 전처리가 스퍼터 증착된 Cu 박막과 FR-4 기판 사이의 계면접착력에 미치는 영향)

  • Min, Kyoung-Jin;Park, Sung-Cheol;Lee, Ki-Wook;Kim, Jae-Dong;Kim, Do-Geun;Lee, Gun-Hwan;Park, Young-Bae
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.1
    • /
    • pp.26-31
    • /
    • 2009
  • The effects of $Ar/O_2$ ion-beam pre-treatment conditions on the interfacial adhesion energy of sputterdeposited Cu thin film to FR-4 substrate were systematically investigated in order to understand the interfacial bonding mechanism for practical application to advanced chip-in-substrate package systems. Measured peel strength increases from $45.8{\pm}5.7g/mm$ to $61.3{\pm}2.4g/mm$ by $Ar/O_2$ ion-beam pre-treatment with anode voltage of 64 V. Interfacial bonding mechanism between sputter-deposited Cu film and FR-4 substrate seems to be dominated by chemical bonding effect rather than mechanical interlocking effect. It is found that chemical bonding intensity between carbon and oxygen at FR-4 surface increases due to $Ar/O_2$ ion-beam pretreatment, which seems to be related to the strong adhesion energy between sputter-deposited Cu film and FR-4 substrate.

The evaluation of the extraction efficiency of PSS(patterned sapphire substrate) LED using simulation (시뮬레이션을 이용한 PSS (patterned sapphire substrate) LED의 광추출 효율 평가)

  • Lee, Jin-Bock;Yoon, Sang-Ho;Kim, Dong-Woohn;Choi, Chang-Hwan
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.4
    • /
    • pp.91-96
    • /
    • 2007
  • The light extraction efficiency in GaN-on-sapphire LEDs based on a simple model was analyzed qualitatively. The light extraction efficiency in the LEDs is simulated numerically by using ray tracing method. In the present study, the extraction efficiency was simulated on flat LED and PSS(patterned sapphire substrate) LED. The role of the patterned sapphire substrate in PSS LED are analyzed and discussed. And, the effects of reflectance on flat LED and PSS LED were investigated. This analysis of simulation results provide a numeric figure for the extraction efficiency of LEDs and are helpful in the design of high brightness GaN LEDs.

Effects of Substrate Temperature on the Morphology of Diamond Thin Films Deposited by Hot Filament CVD (Hot Filament CVD에 의해서 증착된 다이아몬드 박막의 표면형상에 미치는 기판온도의 영향)

  • 형준호;조해석
    • Korean Journal of Crystallography
    • /
    • v.6 no.1
    • /
    • pp.14-26
    • /
    • 1995
  • The growth mechanism of diamond thin films, deposited by Hot Filament CVD, was investigated through observation of changes in their surface morphology as a function of the substance temperature and deposition time. Amorphous carbon or DLC thin films were deposited at low substrate temperature. Diamond films consisting of square-shaped particles, whose surfaces are (100) planes, were deposited at an intermedate temperature. At high substrate temperatures, diamond films consisting of the particles showing both (100) and (111) plane were deposited. The (100) proferred orientation of the diamond films are believed to be due to a relatively high supersaturation during deposition, and the growth condition for the diamond films having (100) preferred orientation can be applied to the single crystal growth since no twins are generated on the (100) plane. The grain size of the diamond films did not change with increasing temperature and its increasing rate with increasing deposition time was the same irrespective of the substrate temperature. However, the nucleation density increased with substrate temperature and its increasing rate with deposition time was much higher for the films deposited at higher substrate temperature.

  • PDF

Thermic Effect of Food and Macronutrient Oxidation Rate in Men and Women after Consumption of a Mixed Meal (성인 남녀의 식사성 발열효과 및 식후 영양소 산화율)

  • Kim, Myung-Hee;Kim, Eun-Kyung
    • Journal of Nutrition and Health
    • /
    • v.44 no.6
    • /
    • pp.507-517
    • /
    • 2011
  • The purpose of this study was to investigate the effects of gender on the thermic effect of food and substrate oxidation rate during 5 hours after a mixed meal. Twenty healthy college students (10 males and 10 females) aged 20-26 years participated in this study. The energy contents of the experimental diets were 775 kcal and 627 kcal for males and females respectively, which were 30% of individual energy requirements and were composed of 65/15/20% as the proportion of carbohydrate/protein/fat. Resting and postprandial energy expenditure and substrate oxidation rates were measured with indirect calorimetry in the fasting state and every 30 min for 5 hours after meal consumption. Thermic effects of food expressed as ${\Delta}AUC$ and TEF% were not significantly different between males and females. However, TEF% adjusted for body weight and fat-free mass in males (0.095% and 0.120%) were significantly lower than those in females (0.152% and 0.213%)(p < 0.05). The total amount of carbohydrate oxidized was significantly lower in males than that in females (58.6 vs. 86.6 mg/kcal energy intake/5 h, p < 0.05). In contrast, the total amount of fat oxidized was significantly higher in males than that in females after the meal (32.9 vs. 17.2 mg/kcal energy intake/5 h, p < 0.01). These results indicate that gender affects the thermic effects of food and the substrate oxidation rate after a meal. The results show that males use relatively less carbohydrate and more fat as an energy source after a meal than that of females.

Effects of Si cluster incorporation on properties of microcrystalline silicon thin films

  • Kim, Yeonwon;Yang, Jeonghyeon;Kang, Jun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.181-181
    • /
    • 2016
  • Hydrogenated microcrystalline silicon (${\mu}c-Si:H$) films have attracted much attention as materials of the bottom-cells in Si thin film tandem photovoltaics due to their low bandgap and excellent stability against light soaking. However, in PECVD, the source gas $SiH_4$ must be highly diluted by $H_2$, which eventually results in low deposition rate. Moreover, it is known that high-rate ${\mu}c-Si:H$ growth is usually accompanied by a large number of dangling-bond (DB) defects in the resulting films, which act as recombination centers for photoexcited carriers, leading to a deterioration in the device performance. During film deposition, Si nanoparticles generated in $SiH_4$ discharges can be incorporated into films, and such incorporation may have effects on film properties depending on the size, structure, and volume fraction of nanoparticles incorporated into films. Here we report experimental results on the effects of nonoparticles incorporation at the different substrate temperature studied using a multi-hollow discharge plasma CVD method in which such incorporation can be significantly suppressed in upstream region by setting the gas flow velocity high enough to drive nanoparticles toward the downstream region. All experiments were performed with the multi-hollow discharge plasma CVD reactor at RT, 100, and $250^{\circ}C$, respectively. The gas flow rate ratio of $SiH_4$ to $H_2$ was 0.997. The total gas pressure P was kept at 2 Torr. The discharge frequency and power were 60 MHz, 180 W, respectively. Crystallinity Xc of resulting films was evaluated using Raman spectra. The defect densities of the films were measured with electron spin resonance (ESR). The defect density of fims deposited in the downstream region (with nonoparticles) is higher defect density than that in the upstream region (without nanoparticles) at low substrate temperature of RT and $100^{\circ}C$. This result indicates that nanoparticle incorporation can change considerably their film properties depending on the substrate temperature.

  • PDF

Effects of Substrate on the Characteristics of SnO2 Thin Film Gas Sensors (기판 종류에 따른 박막형 SnO2 가스 센서의 응답특성)

  • Kim, Seon-Hoon;Park, Shin-Chul;Kim, Jin-Hyuk;Moon, Jong-Ha;Lee, Byung-Teak
    • Korean Journal of Materials Research
    • /
    • v.13 no.2
    • /
    • pp.111-114
    • /
    • 2003
  • Effects of substrate materials on the microstructure and the sensitivity of $SnO_2$thin film gas sensors have been studied. Various substrates were studied, such as oxidized silicon, sapphire, polished alumina, and unpolished alumina. It was observed that strong correlation exists between the electrical resistance and the CO gas sensitivity of the manufactured sensors and the surface roughness of $SnO_2$thin films, which in turn was related to the surface roughness of the original substrates. X$SnO_2$thin film gas sensor on unpolished alumina with the highest surface roughness showed the highest initial resistance and CO gas sensitivity. The transmission electron microscopy observation indicated that shape and size of the columnar microstructure of the thin films were not critically affected by the type of substrates.

DRAM Package Substrate Using Via Cutting Structure (비아 절단 구조를 사용한 DRAM 패키지 기판)

  • Kim, Moon-Jung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.7
    • /
    • pp.76-81
    • /
    • 2011
  • A new via cutting structure in 2-layer DRAM package substrate has been fabricated to lower its power distribution network(PDN) impedance. In new structure, part of the via is cut off vertically and its remaining part is designed to connect directly with the bonding pad on the package substrate. These via structure and substrate design not only provide high routing density but also improve the PDN impedance by shortening effectively the path from bonding pad to VSSQ plane. An additional process is not necessary to fabricate the via cutting structure because its structure is completed at the same time during a process of window area formation. Also, burr occurrence is minimized by filling the via-hole inside with a solder resist. 3-dimensional electromagnetic field simulation and S-parameter measurement are carried out in order to validate the effects of via cutting structure and VDDQ/VSSQ placement on the PDN impedance. New DRAM package substrate has a superior PDN impedance with a wide frequency range. This result shows that via cutting structure and power/ground placement are effective in reducing the PDN impedance.