• 제목/요약/키워드: edge-detection algorithm

Search Result 679, Processing Time 0.022 seconds

Blocking artifact reduction using singularities detection and Lipschitz regularity from multiscale edges (다층스케일 웨이블릿 변환영역에서 특이점 검출 및 Lipschitz 정칙 상수를 이용한 블록화 현상 제거)

  • Lee, Suk-Hwan;Kwon, Kee-Koo;Kim, Byung-Ju;Kwon, Seong-Geun;Lee, Jong-Won;Lee, Kuhn-Il
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.10A
    • /
    • pp.1011-1020
    • /
    • 2002
  • The current paper presents an effective deblocking algorithm for block-based coded images using singularity detection in a wavelet transform. In block-based coded images, the local maxima of a wavelet transform modulus detect all singularities, including blocking artifacts, from multiscale edges. Accordingly, the current study discriminates between a blocking artifact and an edge by estimation the Lipschitz regularity of the local maxima and removing the wavelet transform modulus of a blocking artifact that has a negative Lipschitz regularity exponent. Experimental results showed that the performance of the proposed algorithm was objectively and subjectively superior.

Urinalysis Screening Application based on Smartphone (스마트폰 기반 요검사 스크리닝 애플리케이션)

  • Baek, Seung-Hyeok;Choi, Hong-Rak;Kim, Kyung-Seok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.5
    • /
    • pp.95-102
    • /
    • 2021
  • The urinalysis, which is universally accessible to the general public, has disadvantages of being less objective using sight and purchasing a separate portable urinalysis machine. However, due to the high penetration rate and performance improvement of smartphone created by the development of mobile communication technology, research on urinalysis services using smartphone has been conducted. In this paper, a new urinalysis screening application based on smartphone was developed by supplementing the limitations of the previously studied urinalysis services. The key technology of the application is urinalysis recognition algorithm and urinalysis pad color determination algorithm through image-processing and contour detection. In order to confirm the performance of the developed application, urinalysis strip was photographed and analyzed from various backgrounds and angles.

Demosaicing Algorithm by Gradient Edge Detection Filtering on Color Component (컬러 성분 에지 기울기 검출 필터링을 이용한 디모자이킹 알고리즘)

  • Jeon, Gwan-Ggil;Jung, Tae-Young;Kim, Dong-Hyung;Kim, Seung-Jong;Jeong, Je-Chang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.12C
    • /
    • pp.1138-1146
    • /
    • 2009
  • Digital cameras adopting a single CCD detector collect image color by subsampling in three color planes and successively interpolating the information to reconstruct full-resolution color images. Therefore, to recovery of a full-resolution color image from a color filter array (CFA) like the Bayer pattern is generally considered as an interpolation issue for the unknown color components. In this paper, we first calculate luminance component value by combining R, G, B channel component information which is quite different from the conventional demosaicing algorithm. Because conventional system calculates G channel component followed by computing R and B channel components. Integrating the obtained gradient edge information and the improved weighting function in luminance component, a new edge sensitive demosaicing technique is presented. Based on 24 well known testing images, simulation results proved that our presented high-quality demosaicing technique shows the best image quality performance when compared with several recently presented techniques.

Medical Image Enhancement Using an Adaptive Nonlinear Histogram Stretching (적응적 비선형 히스트그램 스트레칭을 이용한 의료영상의 화질향상)

  • Kim, Seung-Jong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.1
    • /
    • pp.658-665
    • /
    • 2015
  • In the production of medical images, noise reduction and contrast enhancement are important methods to increase qualities of processing results. By using the edge-based denoising and adaptive nonlinear histogram stretching, a novel medical image enhancement algorithm is proposed. First, a medical image is decomposed by wavelet transform, and then all high frequency sub-images are decomposed by Haar transform. At the same time, edge detection with Sobel operator is performed. Second, noises in all high frequency sub-images are reduced by edge-based soft-threshold method. Third, high frequency coefficients are further enhanced by adaptive weight values in different sub-images. Finally, an adaptive nonlinear histogram stretching method is applied to increase the contrast of resultant image. Experimental results show that the proposed algorithm can enhance a low contrast medical image while preserving edges effectively without blurring the details.

A Real Time Deblocking Technique Using Adaptive Filtering in a Mobile Environment (모바일 환경에서 적응적인 필터링을 이용한 실시간 블록현상 제거 기법)

  • Yoo, Jae-Wook;Park, Dae-Hyun;Kim, Yoon
    • The Journal of Korean Association of Computer Education
    • /
    • v.13 no.4
    • /
    • pp.77-86
    • /
    • 2010
  • In this paper, we propose a real time post-processing visual enhancement technique to reduce the blocking artifacts in block based DCT decoded image for mobile devices that have allocation of the restricted resource. In order to reduce the blocking artifacts effectively even while preserving the image edge to the utmost, the proposed algorithm uses the deblocking filtering or the directional filtering according to the edge detection of the each pixel. After it is discriminated that the pixel to apply the deblocking filtering belongs again to the monotonous area, the weighted average filter with the adaptive mask is applied for the pixel to remove the blocking artifacts. On the other hand, a new directional filter is utilized to get rid of staircase noise and preserve the original edge component. Experimental results show that the proposed algorithm produces better results than those of the conventional algorithms in both subjective and objective qualities.

  • PDF

Improvement of Direction-Oriented Interpolation for Deinterlacing (디인터레이싱을 위한 방향지향 보간법의 개선)

  • Park, Do-Young;Lee, Yeonkyung;Yoo, Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.9
    • /
    • pp.2209-2215
    • /
    • 2014
  • This paper presents, a deinterlacing method by improving the Direction-Oriented Interpolation (DOI) technique. The technique is considered to be a very strong tool for intrafield-based deinterlacing. However, DOI has some problems such as long processing time, wrong edge detection in periodic pattern. To remedy this problem, we replace the full search in DOI by a two-step search to reduce processing time and introduces two additional processes to improve image quality. In the proposed method, the spatial direction vectors (SDVs) misread data are reconsidered to prevent them utilizing in the next interpolation step, resulting in an accurate deinterlacing method. We conduct experiments with ISO experimental images to compare the proposed method with the existing methods including line evarage (LA), edge-based line averaging (ELA), DOI, selective deinterlacing algorithm (SDA). Experimental results show the proposed method gives better performance in objective and subjective quality than existing deinterlacing methods.

A Study on the Development of Surface Defect Inspection Preprocessing Algorithm for Cold Mill Strip (냉연 표면흠 검사를 위한 전처리 알고리듬에 관한 연구)

  • Kim, Jong-Woong;Kim, Kyoung-Min;Moon, Yun-Shik;Park, Gwi-Tae;Lee, Jong-Hak;Jung, Jin-Yang
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1240-1242
    • /
    • 1996
  • In a still mill, the effective surface defect inspection algorithm is necessary. For this purpose, this paper proposed the preprocessing algorithm for surface defect inspection of cold mill strip. This consists of live steps. They are edge detection, binarizing, noise deletion, combining of fragmented defect and selecting the largest defect. Especially, binarizing is a critical problem. Bemuse the performance of the preprocessing is largely depend on the binarized image. So, we develope the adaptive thresholding method, which is multilevel thresholding. The thresholding value is varied according to the mean graylevel value of each test image. To investigate the performance of the proposed algorithm, we classified the detected defect using neural network. The test image is 20 defect images captured at German Sick Co. This algorithm is proved to have good property in cold mill strip surface inspection.

  • PDF

Image Restoration Algorithm Damaged by Mixed Noise using Fuzzy Weights and Noise Judgment (퍼지 가중치와 잡음판단을 이용한 복합잡음에 훼손된 영상의 복원 알고리즘)

  • Cheon, Bong-Won;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.133-135
    • /
    • 2022
  • With the development of IoT and AI technologies and media, various digital devices are being used, and unmanned and automation is progressing rapidly. In particular, high-level image processing technology is required in fields such as smart factories, autonomous driving technology, and intelligent CCTV. However, noise present in the image affects processes such as edge detection and object recognition, and causes deterioration of system accuracy and reliability. In this paper, we propose a filtering algorithm using fuzzy weights to reconstruct images damaged by complex noise. The proposed algorithm obtains a reference value using noise judgment and calculates the final output by applying a fuzzy weight. Simulation was conducted to verify the performance of the proposed algorithm, and the result image was compared with the existing filter algorithm and evaluated.

  • PDF

Image Dehazing Enhancement Algorithm Based on Mean Guided Filtering

  • Weimin Zhou
    • Journal of Information Processing Systems
    • /
    • v.19 no.4
    • /
    • pp.417-426
    • /
    • 2023
  • To improve the effect of image restoration and solve the image detail loss, an image dehazing enhancement algorithm based on mean guided filtering is proposed. The superpixel calculation method is used to pre-segment the original foggy image to obtain different sub-regions. The Ncut algorithm is used to segment the original image, and it outputs the segmented image until there is no more region merging in the image. By means of the mean-guided filtering method, the minimum value is selected as the value of the current pixel point in the local small block of the dark image, and the dark primary color image is obtained, and its transmittance is calculated to obtain the image edge detection result. According to the prior law of dark channel, a classic image dehazing enhancement model is established, and the model is combined with a median filter with low computational complexity to denoise the image in real time and maintain the jump of the mutation area to achieve image dehazing enhancement. The experimental results show that the image dehazing and enhancement effect of the proposed algorithm has obvious advantages, can retain a large amount of image detail information, and the values of information entropy, peak signal-to-noise ratio, and structural similarity are high. The research innovatively combines a variety of methods to achieve image dehazing and improve the quality effect. Through segmentation, filtering, denoising and other operations, the image quality is effectively improved, which provides an important reference for the improvement of image processing technology.

An Iris Detection Algorithm for Disease Prediction based Iridology (홍채학기반이 질병예측을 위한 홍채인식 알고리즘)

  • Cho, Young-bok;Woo, Sung-Hee;Lee, Sang-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.1
    • /
    • pp.107-114
    • /
    • 2017
  • Iris diagnosis is an alternative medicine to diagnose the disease of the patient by using different of the iris pattern, color and other characteristics. This paper proposed a disease prediction algorithm that using the iris regions that analyze iris change to using differential image of iris image. this method utilize as patient's health examination according to iris change. Because most of previous studies only find a sign pattern in a iris image, it's not enough to be used for a iris diagnosis system. We're developed an iris diagnosis system based on a iris images processing approach, It's presents the extraction algorithms of 8 major iris signs and correction manually for improving the accuracy of analysis. As a result, PNSR of applied edge detection image is about 132, and pattern matching area recognition presented practical use possibility by automatic diagnostic that presume situation of human body by iris about 91%.