• Title/Summary/Keyword: edge finite elements

Search Result 73, Processing Time 0.024 seconds

Buckling and vibration analysis of stiffened plate subjected to in-plane concentrated load

  • Srivastava, A.K.L.;Datta, P.K.;Sheikh, A.H.
    • Structural Engineering and Mechanics
    • /
    • v.15 no.6
    • /
    • pp.685-704
    • /
    • 2003
  • The buckling and vibration characteristics of stiffened plates subjected to in-plane concentrated edge loading are studied using finite element method. The problem involves the effects of non-uniform stress distribution over the plate. Buckling loads and vibration frequencies are determined for different plate aspect ratios, boundary edge conditions and load positions. The non-uniform stresses may also be caused due to the supports on the edges. The analysis presented determines the initial stresses all over the region considering the pre-buckling stress state for different kinds of loading and edge conditions. In the structural modeling, the plate and the stiffeners are treated as separate elements where the compatibility between these two types of elements is maintained. The vibration characteristics are discussed and the results are compared with those available in the literature and some interesting new results are obtained.

THE UNIQUE EXISTENCE OF WEAK SOLUTION TO THE CURL-BASED VECTOR WAVE EQUATION WITH FIRST ORDER ABSORBING BOUNDARY CONDITION

  • HYESUN NA;YOONA JO;EUNJUNG LEE
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.27 no.1
    • /
    • pp.23-36
    • /
    • 2023
  • The vector wave equation is widely used in electromagnetic wave analysis. This paper solves the vector wave equation using curl-conforming finite elements. The variational problem is established from Riesz functional based on vector wave equation and the unique existence of weak solution is explored. The edge elements are used in computation and the simulation results are compared with those obtained from a commercial simulator, ANSYS HFSS (high-frequency structure simulator).

Analysis of a coupled waveguide structure using the edge element method (변유한요소법을 이용한 결합구조를 갖는 도파관 구조의 해석)

  • Kim, Young-Tae;Kwon, Jin-Ho;Ahn, Dal;Park, Jun-Seok;Kim, Hyeong-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1999.11d
    • /
    • pp.1117-1119
    • /
    • 1999
  • An edge finite element method is applied to calculate the field distribution of a coupled waveguide structure. We compares a node based finite element method with the edge element one. For 2-d eigenvalue problems of waveguide structures, the former generates spurious eigenmodes, but the latter dose not. Using an simple rectangular waveguide, we implement both methods to obtain some results of field computation in waveguide. The paper shows that the finite element method using edge elements succeeds in suppressing spurious solutions.

  • PDF

A study on the application of finite element method to analysis of the magnetic flux distribution characteristics of the tubular motor (Tubular motor의 자속분포 특성 해석을 위한 유한요소법 적용연구)

  • 임달호;임태빈
    • 전기의세계
    • /
    • v.30 no.12
    • /
    • pp.811-816
    • /
    • 1981
  • In this paper, the finite element method is applied to find the flux distribution of the magnetic field in the end region of the tubular motor. In order to analyze two-dimensional flux distribution, the r-z domain to be analyzed is subdivided into 56 nodes, 84 elements. In the case of wt=O and .pi./2, the flux distribution is shifted to the edge with frequency (w) and time (t) increase in the edge and the air gap. It is proved that this study does fit the actual phenomena.

  • PDF

Finite element analysis for laterally loaded piles in sloping ground

  • Sawant, Vishwas A.;Shukla, Sanjay Kumar
    • Coupled systems mechanics
    • /
    • v.1 no.1
    • /
    • pp.59-78
    • /
    • 2012
  • The available analytical methods of analysis for laterally loaded piles in level ground cannot be directly applied to such piles in sloping ground. With the commercially available software, the simulation of the appropriate field condition is a challenging task, and the results are subjective. Therefore, it becomes essential to understand the process of development of a user-framed numerical formulation, which may be used easily as per the specific site conditions without depending on other indirect methods of analysis as well as on the software. In the present study, a detailed three-dimensional finite element formulation is presented for the analysis of laterally loaded piles in sloping ground developing the 18 node triangular prism elements. An application of the numerical formulation has been illustrated for the pile located at the crest of the slope and for the pile located at some edge distance from the crest. The specific examples show that at any given depth, the displacement and bending moment increase with an increase in slope of the ground, whereas they decrease with increasing edge distance.

An Adaptive Mesh Refinement Scheme for 3D Non-Linear Finite Element Analysis of Magnetostatic Problems (3차원 비선형 정자장 문제의 유한요소 해석을 위한 적응 요소분할 기법)

  • Choi, Yong-Kwon;Seop, Ryu-Jae;Koh, Chang-Seop
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.6
    • /
    • pp.306-313
    • /
    • 2006
  • A three dimensional adaptive finite element refinement algorithm is developed for non-linear magnetostatic field problems. In the method, the edge elements are used for finite element formulation, and the local error in each element is estimated from the fact that the tangential components of magnetic field intensity and the normal components of magnetic flux density should be continuous at the interface of the two adjacent elements. Based on the estimated error, the elements which have big error are divided into several elements using bisection method. The effectiveness of the developed algorithm is proved through numerical examples.

A 2-D four-noded finite element containing a singularity of order λ

  • Abdel Wahab, M.M.;de Roeck, G.
    • Structural Engineering and Mechanics
    • /
    • v.3 no.4
    • /
    • pp.383-390
    • /
    • 1995
  • A 2-D four-noded finite element which contains a ${\lambda}$ singularity is developed. The new element is compatible with quadratic standard isoparametric elements. The element is tested on two different examples. In the first example, an edge crack problem is analyzed using two different meshes and different integration orders. The second example is a crack perpendicular to the interface problem which is solved for different material properties and in turn different singularity order ${\lambda}$. The results of those examples illustrate the efficiency of the proposed element.

LONG PATHS IN THE DISTANCE GRAPH OVER LARGE SUBSETS OF VECTOR SPACES OVER FINITE FIELDS

  • BENNETT, MICHAEL;CHAPMAN, JEREMY;COVERT, DAVID;HART, DERRICK;IOSEVICH, ALEX;PAKIANATHAN, JONATHAN
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.1
    • /
    • pp.115-126
    • /
    • 2016
  • Let $E{\subset}{\mathbb{F}}^d_q$, the d-dimensional vector space over the finite field with q elements. Construct a graph, called the distance graph of E, by letting the vertices be the elements of E and connect a pair of vertices corresponding to vectors x, y 2 E by an edge if ${\parallel}x-y{\parallel}:=(x_1-y_1)^2+{\cdots}+(x_d-y_d)^2=1$. We shall prove that the non-overlapping chains of length k, with k in an appropriate range, are uniformly distributed in the sense that the number of these chains equals the statistically correct number, $1{\cdot}{\mid}E{\mid}^{k+1}q^{-k}$ plus a much smaller remainder.

Stiffening evaluation of flat elements towards stiffened elements under axial compression

  • Manikandan, P.;Arun, N.
    • Advances in Computational Design
    • /
    • v.3 no.1
    • /
    • pp.71-86
    • /
    • 2018
  • Thin-walled cross-sections can be optimized to enhance their resistance and progress their behaviour, leading to more competent and inexpensive structural system. The aim of this study is to afford a methodology that would facilitate progress of optimized cold formed steel (CFS) column section with maximum ultimate strength for practical applications. The proposed sections are designed to comply with the geometrical standards of pre-qualified column standards for CFS structures as well as with the number of industrialized and practical constraints. The stiffening evaluation process of CFS lipped channel columns, a five different cross section are considered. The experimental strength and behaviour of the proposed sections are verified by using the finite element analysis (FEA). A series comprehensive parametric study is carried out covering a wide range of section slenderness and overall slenderness ratio of the CFS column with and without intermediate web stiffeners. The ultimate strength of the sections is determined based on the Direct Strength Specification and other design equation available from the literature for CFS structures. A modified design method is proposed for the DSM specification. The results indicate that the CFS column with complex edge and intermediate web stiffeners provides an ultimate strength which is up to 78% higher than standard optimized shapes with the same amount of cross sectional area.

Elastic Stability of Perforated Concrete Shear Wall (개구부를 갖는 콘크리트 전단벽의 탄성안정)

  • 김준희;김순철
    • Computational Structural Engineering
    • /
    • v.11 no.1
    • /
    • pp.251-259
    • /
    • 1998
  • Concrete shear wall with opening is modeled as a rectangular thin plate. The stability analysis results are presented by the buckling coefficient, k, for two different boundary conditions. The other parameters whose variation have been considered are the ratio of the bending induced force to gravity force, a, the ratio of the horizontal shear force to the gravity force ratio, A and the change of location and the size of perforated part. To obtain the results by finite element method, an example plate has been divided into 27*9 square elements. Four node rectangular c.deg. continuous finite elements having three degrees of freedom per each node is adopted. It is generally concluded that the buckling coefficients decrease as the size of hole increases, and the location of hole moves to free edge of the wall.

  • PDF