LONG PATHS IN THE DISTANCE GRAPH OVER LARGE SUBSETS OF VECTOR SPACES OVER FINITE FIELDS |
BENNETT, MICHAEL
(SCHOOL OF MATHEMATICAL SCIENCES ROCHESTER INSTITUTE OF TECHNOLOGY)
CHAPMAN, JEREMY (DEPARTMENT OF MATHEMATICS LYON COLLEGE) COVERT, DAVID (DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE UNIVERSITY OF MISSOURI-SAINT LOUIS) HART, DERRICK (DEPARTMENT OF MATHEMATICS ROCKHURST UNIVERSITY) IOSEVICH, ALEX (DEPARTMENT OF MATHEMATICS UNIVERSITY OF ROCHESTER) PAKIANATHAN, JONATHAN (DEPARTMENT OF MATHEMATICS UNIVERSITY OF ROCHESTER) |
1 | J. Chapman, M. B. Erdogan, D. Hart, A. Iosevich, and D. Koh, Pinned distance sets, k-simplices, Wolff's exponent in finite fields and sum-product estimates, Math Z. 271 (2012), no. 1-2, 63-93. DOI |
2 | D. Covert, D. Hart, A. Iosevich, D. Koh, and M. Rudnev, Generalized incidence theorems, homogeneous forms and sum-product estimates in finite fields, European J. Combin. 31 (2010), no. 1, 306-319. DOI |
3 | D. Covert, D. Hart, A. Iosevich, S. Senger, and I. Uriarte-Tuero, A Furstenberg-Katznelson-Weiss type-theorem on (d+1)-point configurations in sets of positive density in finite field geometries, Discrete Math. 311 (2011), no. 6, 423-430. DOI |
4 | A. Iosevich and M. Rudnev Erdos distance problem in vector spaces over finite fields, Transactions of the AMS, 2007. |
5 | H. Iwaniec and E. Kowalski, Analytic Number Theory, Colloquium Publications 53 (2004). |
6 | A. Medrano, P. Myers, H. Stark, and A. Terras, Finite analogues of Euclidean space, J. Comput. Appl. Math. 68 (1996), no. 1-2, 221-238. DOI |
7 | L. Vinh, The Szemeredi-Trotter type theorem and the sum-product estimate in finite fields, European J. Combin. 32 (2011), no. 8, 1177-1181. DOI |