• Title/Summary/Keyword: ecotoxicity

Search Result 157, Processing Time 0.023 seconds

Next Generation Technology to Minimize Ecotoxicity and to Develop the Sustainable Environment: White Biotechnology

  • Sang, Byoung-In;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • v.1 no.3
    • /
    • pp.143-148
    • /
    • 2005
  • This review aims to show that industrial sustainable chemistry, minimizing or reducing the ecological impacts by the chemicals, is not an emerging trend, but is already a reality through the application of 'White Biotechnology' such as 'green' chemistry and engineering expertise. A large number of current industrial case studies are presented, as well as new developments from the chemical industry. The case studies cover new chemistry, new process design and new equipment. By articulating the requirements for industrial application of sustainable chemistry, this review also seeks to bridge any existing gap between academia and industry regarding the R & D and engineering challenges needed to ensure green chemistry research enables a more sustainable future chemical industry considering eco-toxicological impacts.

ACUTE AND DEVELOPMENTAL TOXICITY OF BISPHENOL A TO Daphnia magna

  • Hwang, Gab-Soo;Kim, Kang-Joo
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2005.12a
    • /
    • pp.124-126
    • /
    • 2005
  • Aquatic ecotoxicity of bisphenol A, a well known endocrine disrupter in mammals, was studied using lab. reared Daphnia magna as a test organism. The static acute 48h $LC_{50}$ of bisphenol A was 12.9mg/L and 110-hr $LC_{50}$ values of bisphenol A for daphnid embryos of different ages after deposition into the brood chamber increase with ages in the range of 1.55mg/L-8.91mg/L. Bisphenol A showed the ability to inhibit embryonic development. The lethal response and developmental inhibition all showed good concentration-response relationship.

  • PDF

Effects of Gasoline Additive, Methyl tert-Butyl Ether (MTBE) to Human Health and Ecosystem (가솔린첨가제 MTBE의 인체 및 생태영향)

  • An Youn-Joo;Lee Woo-Mi
    • Environmental Analysis Health and Toxicology
    • /
    • v.21 no.2 s.53
    • /
    • pp.93-102
    • /
    • 2006
  • Methyl tert-butyl ether (MTBE), an octane booster that is added to the reformulated gasoline, has been a widespread contaminant in aquatic ecosystem. MTBE is a recalcitrant pollutant having low biodegradability. Due to its higher water solubility and low octanol-water partition coefficient, it can be rapidly transported to the surrounding water environment. Also, MTBE is a known animal carcinogen, and is classified as a possible human carcinogen by U. S. Environmental Protection Agency. The adverse effect of MTBE to aquatic biota was widely reported. In Korea, the recent detection of MTBE in groundwater near gasoline filling stations has drawn concern to public health and ecosystem. To address this concern, the effect of MTBE to human health and ecosystem was discussed in this review. Also, ecotoxicity data of MTBE for fish, invertebrates, and algae were extensively compared to estimate the hazard concentration 5($HC_5$) of MTBE as a screening level.

Evaluation of the sub-lethal toxicity of Cu, Pb, bisphenol A and polychlorinated biphenyl to the marine dinoflagellate Cochlodinium polykrikoides

  • Ebenezer, Vinitha;Ki, Jang-Seu
    • ALGAE
    • /
    • v.27 no.1
    • /
    • pp.63-70
    • /
    • 2012
  • Algae are sensitive to a wide range of pollutants, and are effective bioindicators in ecotoxicity assessments. Here, we evaluated the sub-lethal sensitivity of the marine dinoflagellate Cochlodinium polykrikoides upon exposure to copper (Cu), lead (Pb), bisphenol A (BPA), and Aroclor 1016 (polychlorinated biphenyl, PCB). Toxic effects were assessed by observations of the reduction in cell counts and chlorophyll a levels after exposure to each toxicant. C. polykrikoides displayed dose-dependent, sigmoidal responses when exposed to the tested chemicals. $EC_{50}$-72 h values for Cu, Pb, BPA, and PCB were 12.74, 46.70, 68.15, and $1.07mg\;L^{-1}$, respectively. PCB, which is an endocrine-disrupting chemical, was the most sensitive, proving its toxic effect on the dinoflagellate. This study provides baseline data on the toxic effects of commonly used heavy metals and endocrine-disrupting chemicals to a marine dinoflagellate.

국내 서식 토양생물종을 이용한 가솔린 오염토양의 생태독성 평가

  • Lee U-Mi;An Yun-Ju
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2006.04a
    • /
    • pp.207-208
    • /
    • 2006
  • Earthworms have been widely used as bioindicators for soil ecotoxicity assessment. Ecotoxicity of methyl tert-butyl ether(MTBE) to terrestrial organisms were evaluated by- earthworm assay. Test earthworm species were Perionyx excavatus and Eisenia andrei. The. toxicity test was performed based on a OECD guideline No. 207 with slight modification. Mortality and abnormal morphology of earthworms exposed to different concentrations of MTBE were measured. Toxic levels of MTBE were determined by measuring the median lethal concentration (LC5O) after 72 hours. The toxicity data was statistically analyzed by Trimmed Spearman-Harbor method. This study showed that, P. excavatus is more sensitive to E. andrei, and that earthworm assay can be a good protocol to evaluate the soils contaminated gasoline components.

  • PDF

Effect of Nanomaterials on the Early Development of Fish Embryos: (1) Carbon and Other Nanomaterials (어류수정란 발달에 미치는 나노독성 연구동향: (1) 탄소계 및 기타 나노물질)

  • Shin, Yu-Jin;An, Youn-Joo
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.5
    • /
    • pp.762-767
    • /
    • 2012
  • The ecotoxicity assessment of nanomaterials (NMs) in the environment is actively conducted throughout the world because of the concerns about their potential risk from usage and release into the environment, as well as their unique physiochemical properties. Ecotoxicity tests for NMs have been conducted using various species and methods; however, in spite of these efforts, the characteristics and toxicity of NMs have not been defined. The fish embryo toxicity test (FET) has been conducted extensively to evaluate the toxicity of NMs as an alternative to a whole-body test in fish. In this study, we collected and analyzed the trends of nanotoxicity on the early development of freshwater fish. The model nanomaterials are carbon NMs ($C_{60},\;C_{70},\;C_{60}$(OH)n and carbon nanotube). Their adverse effects were extensively investigated based on the properties of NMs, test species, and diverse exposure conditions.

Geno- and Ecotoxicity Evaluation of Silver Nanoparticles in Freshwater Crustacean Daphnia magna

  • Park, Sun-Young;Choi, Jin-Hee
    • Environmental Engineering Research
    • /
    • v.15 no.1
    • /
    • pp.23-27
    • /
    • 2010
  • Genotoxic- and ecotoxic assessments of silver nanoparticles (AgNPs) were conducted on the freshwater crustacean Daphnia magna. AgNPs may have genotoxic effects on D. magna, given that the DNA strand breaks increased when exposed to this nanoparticle. Increased mortality was concomitantly observed with DNA damage in the AgNPs-exposed D. magna, which suggests AgNPs-induced DNA damage might provoke higher-level consequences. The results of the comparative toxicities of AgNPs and Ag ions suggest that AgNPs are slightly more toxic than Ag ions. Overall, these results suggest that AgNPs may be genotoxic toward D. magna, which may contribute to the knowledge relating to the aquatic toxicity of AgNPs on aquatic ecosystems, for which little data are available.

Soil Pollution Assessment Based on Ecotoxicological Methods (생태독성학적 기법을 이용한 토양오염평가 방안)

  • An Youn-Joo;Jeong Seung-Woo
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.6
    • /
    • pp.56-62
    • /
    • 2005
  • Chemical analyses are generally used to assess contaminated soils and to monitor the efficiency of soil remediation. In this study, the ecotoxicological methods was suggested to evaluate soil pollution by using a battery of bioassay. Plant assay and earthworm assay were conducted to evaluate ecotoxicity o soils contaminated by heavy metals (cadmium and copper) and oil (BTEX compounds, toluene). Test plants were Zea may, Triticum aestivum, Cucumis sativus, and Sorghum bicolor. The presence of heavy metals decreased the seedling growth. Cucumis sativus and Sorghum bicolor seemed to be good indicator plants which are sensitive to heavy metal pollution as well as BTEX contamination. An earthworm bioassay was performed to predict the ecotoxicity in toluene-contaminated soils, based on a simple contact method. Perionyx excavatus was adopted as a test earthworm species, and the severity of response increased with increasing toluene concentration. The present study demonstrated that ecotoxicological methods could be a quantitative approach to evaluate contaminated soils.

Toxicity Assessment and Evaluation of the Applicability of a Constructed Wetland of Bio-reeds and Bio-ceramics (바이오갈대와 바이오여재를 적용한 인공습지의 효율성 및 독성평가)

  • Park, Da Kyung;Chang, Soon-Woong;Choi, Hanna
    • Korean Journal of Environmental Biology
    • /
    • v.35 no.4
    • /
    • pp.654-661
    • /
    • 2017
  • Recently, a low-impact development (LID) technic such as a wetland has been proposed as a Nature-friendly process for reducing pollutants caused by livestock wastewater. Therefore, the Daphnia magna toxicity was analyzed for livestock wastewater samples, to determine if a wetland system would also be effective in reducing this ecotoxicity. In the present study, acute D. magna toxicity was not significantly dependent on the presence and type of reed, nor type of media. However, when treated with construction wetlands, ecotoxicities decreased as well as TN, TP and COD concentrations. Therefore, it is considered that a construction wetland system with bio reeds and bio-media as well as general reeds would be effective to reduce the ecotoxicity of livestock wastewater. To apply a wetland system as the subsequent treatment process to a livestock waste water treatment facility, it is necessary to perform an integrated evaluation such as treatment efficiency and the ecotoxicity test for various characteristics of livestock wastewater.