DOI QR코드

DOI QR Code

Evaluation of the sub-lethal toxicity of Cu, Pb, bisphenol A and polychlorinated biphenyl to the marine dinoflagellate Cochlodinium polykrikoides

  • Received : 2012.01.22
  • Accepted : 2012.02.14
  • Published : 2012.03.15

Abstract

Algae are sensitive to a wide range of pollutants, and are effective bioindicators in ecotoxicity assessments. Here, we evaluated the sub-lethal sensitivity of the marine dinoflagellate Cochlodinium polykrikoides upon exposure to copper (Cu), lead (Pb), bisphenol A (BPA), and Aroclor 1016 (polychlorinated biphenyl, PCB). Toxic effects were assessed by observations of the reduction in cell counts and chlorophyll a levels after exposure to each toxicant. C. polykrikoides displayed dose-dependent, sigmoidal responses when exposed to the tested chemicals. $EC_{50}$-72 h values for Cu, Pb, BPA, and PCB were 12.74, 46.70, 68.15, and $1.07mg\;L^{-1}$, respectively. PCB, which is an endocrine-disrupting chemical, was the most sensitive, proving its toxic effect on the dinoflagellate. This study provides baseline data on the toxic effects of commonly used heavy metals and endocrine-disrupting chemicals to a marine dinoflagellate.

Keywords

References

  1. Ahn, Y. -H., Shanmugam, P., Ryu, J. -H. & Jeong, J. -C. 2006. Satellite detection of harmful algal bloom occurrences in Korean waters. Harmful Algae 5:213-231. https://doi.org/10.1016/j.hal.2005.07.007
  2. Campbell, P. G. C., Errecalde, O., Fortin, C., Hiriart-Baer, V. P. & Vigneault, B. 2002. Metal bioavailability to phytoplankton: applicability of the biotic ligand model. Comp. Biochem. Physiol. C Toxicol. Pharmacol.133:189-206. https://doi.org/10.1016/S1532-0456(02)00104-7
  3. Craig, W. A., Andes, D. R. & Stamstad, T. 2010. In vivo pharmacodynamics of new lipopeptide mx-2401. Antimicrob. Agents Chemother. 54:5092-5098. https://doi.org/10.1128/AAC.00238-10
  4. Franklin, N. M., Stauber, J. L., Markich, S. J. & Lim, R. P. 2000. pH-dependent toxicity of copper and uranium to a tropical freshwater alga (Chlorella sp.). Aquat. Toxicol. 48:275-289. https://doi.org/10.1016/S0166-445X(99)00042-9
  5. Guillard, R. R. L. & Ryther, J. H. 1962. Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervaceae (Cleve) Gran. Can. J. Microbiol. 8:229-239. https://doi.org/10.1139/m62-029
  6. Guo, R. & Ki, J. -S. 2011. Spliced leader sequences detected in EST data of the dinoflagellates Cochlodinium polykrikoides and Prorocentrum minimum. Algae 26:229-235. https://doi.org/10.4490/algae.2011.26.3.229
  7. Imhoff, J. C., Clough, J., Park, R. A., Stoddard, A. & Hayter, E. 2004. Evaluation of chemical bioaccumulation models of aquatic ecosystems. Report No: 68-c-01-037. U. S. Environmental Protection Agency, Athens, GA, 131 pp.
  8. Jenner, H. A., Taylor, C. J. L., Van Donk, M. & Khalanski, M. 1997. Chlorination by-products in chlorinated cooling water of some European coastal power stations. Mar. Environ. Res. 43:279-293. https://doi.org/10.1016/S0141-1136(96)00091-8
  9. Ki, J. -S. & Han, M. -S. 2008. Implications of complete nuclear large subunit ribosomal RNA molecules from the harmful unarmored dinoflagellate Cochlodinium polykrikoides (Dinophyceae) and relatives. Biochem. Syst. Ecol. 36:573-583. https://doi.org/10.1016/j.bse.2008.03.007
  10. Kudela, R. M., Ryan, J. P., Blakely, M. D., Lane, J. Q. & Peterson, T. D. 2008. Linking the physiology and ecology of Cochlodinium to better understand harmful algal bloom events: a comparative approach. Harmful Algae 7:278-292. https://doi.org/10.1016/j.hal.2007.12.016
  11. Leitao, M. A. da S., Cardozo, K. H. M., Pinto, E. & Colepicolo, P. 2003. PCB-induced oxidative stress in the unicellular marine dinoflagellate Lingulodinium polyedrum. Arch. Environ. Contam. Toxicol. 45:59-65. https://doi.org/10.1007/s00244-002-0208-5
  12. Levy, J. L., Angel, B. M., Stauber, J. L., Poon, W. L., Simpson, S. L., Cheng, S. H. & Jolley, D. F. 2008. Uptake and internalisation of copper by three marine microalgae: comparison of copper-sensitive and copper-tolerant species. Aquat. Toxicol. 89:82-93. https://doi.org/10.1016/j.aquatox.2008.06.003
  13. Li, R., Chen, G. -Z., Tam, N. F. Y., Luan, T. -G., Shin, P. K. S., Cheung, S. G. & Liu, Y. 2009. Toxicity of bisphenol A and its bioaccumulation and removal by a marine microalga Stephanodiscus hantzschii. Ecotoxicol. Environ. Saf. 72:321-328. https://doi.org/10.1016/j.ecoenv.2008.05.012
  14. Liu, G., Chai, X., Shao, Y., Hu, L., Xie, Q. & Wu, H. 2011. Toxicity of copper, lead, and cadmium on the motility of two marine microalgae Isochrysis galbana and Tetraselmis chui. J. Environ. Sci. 23:330-335. https://doi.org/10.1016/S1001-0742(10)60410-X
  15. Liu, Y., Guan, Y., Gao, Q., Tam, N. F. Y. & Zhu, W. 2010. Cellular responses, biodegradation and bioaccumulation of endocrine disrupting chemicals in marine diatom Navicula incerta. Chemosphere 80:592-599. https://doi.org/10.1016/j.chemosphere.2010.03.042
  16. Marzo, A., Dal Bo, L., Monti, N. C., Crivelli, F., Ismaili, S., Caccia, C., Cattaneo, C. & Fariello, R. G. 2004. Pharmacokinetics and pharmacodynamics of safinamide, a neuroprotectant with antiparkinsonian and anticonvulsant activity. Pharmacol. Res. 50:77-85. https://doi.org/10.1016/j.phrs.2003.12.004
  17. Mensink, B. J. W. G., Smit, C. E. & Montforts, M. H. M. M. 2008. Manual for summarising and evaluating environmental aspects of plant protection products. RIVM report 601712004/2008. National Institute for Public Health and the Environment, RIVM, Bilthoven, 78 pp.
  18. Miao, A. -J., Wang, W. -X. & Juneau, P. 2005. Comparison of Cd, Cu, and Zn toxic effects on four marine phytoplankton by pulse-amplitude-modulated fluorometry. Environ. Toxicol. Chem. 24:2603-2611. https://doi.org/10.1897/05-009R.1
  19. Millan de Kuhn, R., Streb, C., Breiter, R., Richter, P., Neesse, T. & Hader, D. -P. 2006. Screening for unicellular algae as possible bioassay organisms for monitoring marine water samples. Water Res. 40:2695-2703. https://doi.org/10.1016/j.watres.2006.04.045
  20. Monro, A. 1992. What is an appropriate measure of exposure when testing drugs for carcinogenicity in rodents? Toxicol. Appl. Pharmacol. 112:171-181. https://doi.org/10.1016/0041-008X(92)90185-U
  21. Monteiro, C. M., Fonseca, S. C., Castro, P. M. L. & Malcata, F. X. 2011. Toxicity of cadmium and zinc on two microalgae, Scenedesmus obliquus and Desmodesmus pleiomorphus, from Northern Portugal. J. Appl. Phycol. 23:97-103. https://doi.org/10.1007/s10811-010-9542-6
  22. Moreno-Garrido, I., Lubián, L. M. & Soares, A. M. V. M. 2000. Influence of cellular density on determination of $EC_{50}$ in microalgal growth inhibition tests. Ecotoxicol. Environ. Saf. 47:112-116. https://doi.org/10.1006/eesa.2000.1953
  23. Organization for Economic Co-operation and Development (OECD). 2006. Freshwater alga and cyanaobacteria, growth inhibition test. Guideline No. 201 (adopted 23 Mar. 2006). OECD guidelines for testing of chemicals. OECD, Paris, 25 pp.
  24. Parsons, T. R., Maita, Y. & Lalli, C. M. 1984. A manual of chemical and biological methods for seawater analysis. Pergamon Press, Oxford, 184 pp.
  25. Perron, M. -C. & Juneau, P. 2011. Effect of endocrine disrupters on photosystem II energy fluxes of green algae and cyanobacteria. Environ. Res. 111:520-529. https://doi.org/10.1016/j.envres.2011.02.013
  26. Richlen, M. L., Morton, S. L., Jamali, E. A., Rajan, A. & Anderson, D. M. 2010. The catastrophic 2008-2009 red tide in the Arabian Gulf region, with observations on the identification and phylogeny of the fish-killing dinoflagellate Cochlodinium polykrikoides. Harmful Algae 9:163-172. https://doi.org/10.1016/j.hal.2009.08.013
  27. Saghir, S. A., Mendrala, A. L., Bartels, M. J., Day, S. J., Hansen, S. C., Sushynski, J. M. & Bus, J. S. 2006. Strategies to assess systematic exposure of chemicals in subchronic/chronic diet and drinking water studies. Toxicol. Appl. Pharmacol. 211:245-260. https://doi.org/10.1016/j.taap.2005.06.010
  28. Stauber, J. L. & Davies, C. M. 2000. Use and limitations of microbial bioassays for assessing copper availability in the aquatic environment. Environ. Rev. 8:255-301. https://doi.org/10.1139/a00-010
  29. Sverdrup, L. E., Kelley, A. E., Krogh, P. H., Nielsen, T., Jensen, J., Scott-Fordsmand, J. J. & Stenersen, J. 2001. Effects of eight polycyclic aromatic compounds on the survival and reproduction of the springtail Folsomia fimetaria L. (Collembola, Isotomidae). Environ. Toxicol. Chem. 20:1332-1338. https://doi.org/10.1897/1551-5028(2001)020<1332:EOEPAC>2.0.CO;2
  30. Tarrant, A. M. 2005. Endocrine-like signalling in cnidarians: current understanding and implications for ecophysiology. Integr. Comp. Biol. 45:201-214. https://doi.org/10.1093/icb/45.1.201
  31. Taylor, F. J. R. 1987. General group characteristics, special features of interest, short history of dinoflagellate study. In Taylor, F. J. R. (Ed.) The Biology of Dinoflagellates. Botanical Monographs, Vol. 21. Blackwell Scientific Publications, Oxford, pp. 1-23.
  32. Tonkopii, V., Zagrebin, A. & Iofina, I. 2008. Bioidentification of xenobiotics as a basis of water management. In Gönenç, E., Vadineanu, A., Wolflin, J. P. & Russo, R. C. (Eds.) Sustainable Use and Development of Watersheds. Springer Science + Business Media B.V., Amsterdam, pp. 349-353.
  33. U. S. Environmental Protection Agency. 1996. Standards for the use or disposal of sewage sludge. Code of Federal Regulations, Title 40, Protection of environment, part 503. U. S. EPA, Washington, D. C.
  34. Vazquez-Duhalt, R., Marquez-Rocha, F., Ponce, E., Licea, A. F. & Viana, M. T. 2006. Nonylphenol, an integrated vision of a pollutant. Appl. Ecol. Environ. Res. 4:1-25.

Cited by

  1. Different transcriptional responses of heat shock protein 70/90 in the marine diatom Ditylum brightwellii exposed to metal compounds and endocrine-disrupting chemicals vol.92, pp.5, 2013, https://doi.org/10.1016/j.chemosphere.2013.03.052
  2. Toxic effects of Aroclor 1016 and bisphenol A on marine green algae Tetraselmis suecica, diatom Ditylum brightwellii and dinoflagellate Prorocentrum minimum vol.52, pp.3, 2016, https://doi.org/10.7845/kjm.2016.6050
  3. Different transcriptional responses of heat shock protein 20 in the marine diatomDitylum brightwelliiexposed to metals and endocrine-disrupting chemicals vol.29, pp.12, 2014, https://doi.org/10.1002/tox.21868
  4. Quantification of the Sub-lethal Toxicity of Metals and Endocrine-disrupting Chemicals to the Marine Green Microalga Tetraselmis suecica vol.16, pp.3, 2013, https://doi.org/10.5657/FAS.2013.0187
  5. Biocide sodium hypochlorite decreases pigment production and induces oxidative damage in the harmful dinoflagellate Cochlodinium polykrikoides vol.29, pp.4, 2014, https://doi.org/10.4490/algae.2014.29.4.311
  6. Heat Shock Protein 70 and 90 Genes in the Harmful DinoflagellateCochlodinium polykrikoides: Genomic Structures and Transcriptional Responses to Environmental Stresses vol.2015, 2015, https://doi.org/10.1155/2015/484626
  7. Transcriptomic profiles reveal the genome-wide responses of the harmful dinoflagellate Cochlodinium polykrikoides when exposed to the algicide copper sulfate vol.17, pp.1, 2016, https://doi.org/10.1186/s12864-015-2341-3
  8. Transcriptional responses of heat shock protein 70 (Hsp70) to thermal, bisphenol A, and copper stresses in the dinoflagellate Prorocentrum minimum vol.89, pp.5, 2012, https://doi.org/10.1016/j.chemosphere.2012.05.014
  9. Physiological and biochemical responses of the freshwater green algae Closterium ehrenbergii to the common disinfectant chlorine vol.133, 2016, https://doi.org/10.1016/j.ecoenv.2016.08.004
  10. Elevated toxic effect of sediments on growth of the harmful dinoflagellate Cochlodinium polykrikoides under high CO2 vol.80, pp.2, 2017, https://doi.org/10.3354/ame01848
  11. A novel cyclophilin gene from the dinoflagellate Prorocentrum minimum and its possible role in the environmental stress response vol.139, 2015, https://doi.org/10.1016/j.chemosphere.2015.06.036
  12. Photosynthetic and biochemical responses of the freshwater green algae Closterium ehrenbergii Meneghini (Conjugatophyceae) exposed to the metal coppers and its implication for toxicity testing vol.56, pp.6, 2018, https://doi.org/10.1007/s12275-018-8081-8
  13. Biodegradation and detoxification of bisphenol A by bacteria isolated from desert soils vol.9, pp.6, 2019, https://doi.org/10.1007/s13205-019-1756-y
  14. De novo transcriptome of the newly described phototrophic dinoflagellate Yihiella yeosuensis: comparison between vegetative cells and cysts vol.166, pp.8, 2019, https://doi.org/10.1007/s00227-019-3554-9
  15. Aquatic pollution caused by mercury, lead, and cadmium affects cell growth and pigment content of marine microalga, Nannochloropsis oculata vol.192, pp.6, 2012, https://doi.org/10.1007/s10661-020-8222-5
  16. Transient effect of bisphenol A (BPA) and di-(2-ethylhexyl) phthalate (DEHP) on the cosmopolitan marine diatom Chaetoceros decipiens-lorenzianus vol.285, pp.None, 2021, https://doi.org/10.1016/j.envpol.2021.117362