Browse > Article
http://dx.doi.org/10.4491/eer.2010.15.1.428

Geno- and Ecotoxicity Evaluation of Silver Nanoparticles in Freshwater Crustacean Daphnia magna  

Park, Sun-Young (University of Seoul/Faculty of Environmental engineering, College of University of Seoul)
Choi, Jin-Hee (University of Seoul/Faculty of Environmental engineering, College of University of Seoul)
Publication Information
Abstract
Genotoxic- and ecotoxic assessments of silver nanoparticles (AgNPs) were conducted on the freshwater crustacean Daphnia magna. AgNPs may have genotoxic effects on D. magna, given that the DNA strand breaks increased when exposed to this nanoparticle. Increased mortality was concomitantly observed with DNA damage in the AgNPs-exposed D. magna, which suggests AgNPs-induced DNA damage might provoke higher-level consequences. The results of the comparative toxicities of AgNPs and Ag ions suggest that AgNPs are slightly more toxic than Ag ions. Overall, these results suggest that AgNPs may be genotoxic toward D. magna, which may contribute to the knowledge relating to the aquatic toxicity of AgNPs on aquatic ecosystems, for which little data are available.
Keywords
Daphnia magna; DNA damage; Ecotoxicity; Genotoxicity; Silver nanoparticles;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Zhai HJ, Sun DW, Wang HS. Catalytic properties of silica/silver nanocomposites. J. Nanosci. Nanotechnol. 2006;6:1968-1972.   DOI   ScienceOn
2 Yamamoto S, Watarai H. Surface-enhanced Raman spectroscopy of dodecanethiol-bound silver nanoparticles at the liquid/liquid interface. Langmuir 2006;22:6562-6569.   DOI   ScienceOn
3 Pal S, Tak YK, Song JM. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol. 2007;73:1712-1720.   DOI   ScienceOn
4 Maynard A, Michelson E. The Nanotechnology Consumer Product Inventory, Project on Emerging Nanotechnology, Woodrow Wilson International Center for Scholars [Internet]. Washington, DC; c2010 [cited 2006 Mar 23]. Available from: http://www.nanotechproject.org/inventories/consumer/.
5 Lam CW, James JT, McCluskey R, Hunter RL. Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol. Sci. 2004;77:126-134.
6 Hussain SM, Hess KL, Gearhart JM, Geiss KT, Schlager JJ. In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol. In Vitro 2005;19:975-983.   DOI   ScienceOn
7 Monteiro-Riviere NA, Nemanich RJ, Inman AO, Wang YYY,Riviere JE. Multi-walled carbon nanotube interactions with human epidermal keratinocytes. Toxicol. Lett. 2005;155:377-384.   DOI   ScienceOn
8 Limbach LK, Wick P, Manser P, Grass RN, Bruinink A, Stark WJ. Exposure of engineered nanoparticles to human lung epithelial cells: Influence of chemical composition and catalytic activity on oxidative stress. Environ. Sci. Technol. 2007;41:4158-4163.   DOI   ScienceOn
9 Rand BP, Peumans P, Forrest SR. Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters. J. Appl. Phys. 2004;96:7519-7526.   DOI   ScienceOn
10 Eom HJ, Choi J. Oxidative stress of CeO2 nanoparticles via p38-Nrf-2 signaling pathway in human bronchial epithelial cell, Beas-2B. Toxicol. Lett. 2009;187:77-83.   DOI   ScienceOn
11 Lovern SB, Klaper R. Daphnia magna mortality when exposed to titanium dioxide and fullerene (C-60) nanoparticles. Environ. Toxicol. Chem. 2006;25:1132-1137.   DOI   ScienceOn
12 Handy RD, Shaw BJ. Ecotoxicity of nanomaterials to fish:challenges for ecotoxicity testing. Integr. Environ. Assess.Manag. 2007;3:458-460.
13 Lovern SB, Strickler JR, Klaper R. Behavioral and physiological changes in Daphnia magna when exposed to nanoparticle suspensions (titanium dioxide, nano-C-60, and C(60)HxC (70)Hx). Environ. Sci. Technol. 2007;41:4465-4470.   DOI   ScienceOn
14 Park SY, Choi J. Cytotoxicity, genotoxicity and ecotoxicity assay using human cell and environmental species for the screening of the risk from pollutant exposure. Environ. Int. 2007;3:817-822.
15 Houk VS, Waters MD. Genetic toxicology and risk assessment of complex environmental mixtures. Drug Chem. Toxicol.1996;19:187-219.   DOI
16 Braydich-Stolle L, Hussain S, Schlager JJ, Hofmann MC. In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol. Sci. 2005;88:412-419.   DOI   ScienceOn
17 Nehls S, Segner H. Comet assay with the fish cell line rainbow trout gonad-2 for in vitro genotoxicity testing of xenobiotics and surface waters. Environ. Toxicol. Chem.2005;24:2078-2087.   DOI   ScienceOn
18 Giesy JP, Graney RL, Newsted JL, et al. Comparison of three sediment bioassay methods using detroit river sediments. Environ. Toxicol. Chem. 1988;7:483-498.   DOI
19 Hund-Rinke K, Simon M. Ecotoxic effect of photocatalytic active nanoparticles TiO2 on algae and daphnids. Environ. Sci. Pollut. Res. 2006;13:225-232.   DOI
20 Lee SW, Park K, Hong J, Choi J. Ecotoxicological evaluation of octachlorostyrene in fourth instar larvae of Chironomus riparius (Diptera, Chironomidae). Environ. Toxicol. Chem.2008;27:1118-1127.   DOI   ScienceOn
21 Ohe T, Watanabe T, Wakabayashi K. Mutagens in surface waters: a review. Mutat. Res.-Rev. Mut. Res. 2004;567:109-149.   DOI   ScienceOn
22 Singh NP, McCoy MT, Tice RR, Schneider EL. A simple technique for quantitation of low-levels of dna damage in individual cells. Exp. Cell Res. 1988;175:184-191.   DOI   ScienceOn
23 Hidalgo E, Dominguez C. Study of cytotoxicity mechanisms of silver nitrate in human dermal fibroblasts. Toxicol. Lett. 1998;98:169-179.   DOI   ScienceOn
24 Oberdorster G, Oberdorster E, Oberdorster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 2005;113:823-839.   DOI   ScienceOn
25 Atienzar FA, Cheung VV, Jha AN, Depledge MH. Fitness parameters and DNA effects are sensitive indicators of copper-induced toxicity in Daphnia magna. Toxicol. Sci. 2001;59:241-250.   DOI   ScienceOn
26 Okamura H, Omori M, Luo R, Aoyama I, Liu D. Application of short-term bioassay guided chemical analysis for water quality of agricultural land run-off. Sci. Total Environ.1999;234:223-231.   DOI   ScienceOn
27 OECD Guidelines for testing of chemicals, section 2. Effects on biotic systems, Daphnia magna acute immobilization test 202. OECD; 1984. Available from: http://puck. sourceoecd.org/vl=2991300/cl=33/nw=1/rpsv/ij/oecdjourn als/1607310x/v1n2/s3/p1.
28 OECD Guidelines for testing of chemicals, section 2. Effects on biotic systems, Daphnia magna reproduction test 211. OECD; 1998. Available from: http://puck.sourceoecd. org/vl=2991300/cl=33/nw=1/rpsv/ij/oecdjournals/1607310 x/v1n2/s12/p1.
29 Fujiwara K, Suematsu H, Kiyomiya E, Aoki M, Sato M, Moritoki N. Size-dependent toxicity of silica nano-particles to Chlorella kessleri. J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng. 2008;43:1167-1173.   DOI   ScienceOn
30 Sayes CM, Wahi R, Kurian PA, et al. Correlating nanoscale titania structure with toxicity: A cytotoxicity and inflammatory response study with human dermal fibroblasts and human lung epithelial cells. Toxicol. Sci. 2006;92:174-185.   DOI   ScienceOn
31 Yin H, Too HP, Chow GM. The effects of particle size and surface coating on the cytotoxicity of nickel ferrite. Biomaterials 2005;26:5818-5826.   DOI   ScienceOn
32 Cotelle S, Ferard JF. Comet assay in genetic ecotoxicology: A review. Environ. Mol. Mutagen. 1999;34:246-255.   DOI   ScienceOn
33 Clement JL, Jarrett PS. Antibacterial silver. Met. Based Drugs 1994;1:467-482.   DOI
34 Kikuchi M, Sasaki Y, Wakabayashi M. Screening of organophosphate insecticide pollution in water by using Daphnia magna. Ecotoxicol. Environ. Saf. 2000;47:239-245.   DOI   ScienceOn
35 Lee SB, Choi J. Multilevel evaluation of nonylphenol toxicity in fourth-instar larvae of Chironomus riparius (Diptera, Chironomidae). Environ. Toxicol. Chem. 2006;25:3006-3014.   DOI   ScienceOn
36 Ji JH, Jung JH, Kim SS, et al. Twenty-eight-day inhalation toxicity study of silver nanoparticles in Sprague-Dawley rats. Inhal. Toxicol. 2007;19:857-871.   DOI   ScienceOn
37 Roh JY, Sim SJ, Yi J, et al. Ecotoxicity of Silver Nanoparticles on the Soil Nematode Caenorhabditis elegans Using Functional Ecotoxicogenomics. Environ. Sci. Technol. 2009;43:3933-3940.   DOI   ScienceOn
38 Silver S. Bacterial resistances to toxic metal ions - A review. Gene 1996;179:9-19.   DOI   ScienceOn