Effect of Nanomaterials on the Early Development of Fish Embryos: (1) Carbon and Other Nanomaterials

어류수정란 발달에 미치는 나노독성 연구동향: (1) 탄소계 및 기타 나노물질

  • Shin, Yu-Jin (Department of Environmental Science, Konkuk University) ;
  • An, Youn-Joo (Department of Environmental Science, Konkuk University)
  • Published : 2012.09.30

Abstract

The ecotoxicity assessment of nanomaterials (NMs) in the environment is actively conducted throughout the world because of the concerns about their potential risk from usage and release into the environment, as well as their unique physiochemical properties. Ecotoxicity tests for NMs have been conducted using various species and methods; however, in spite of these efforts, the characteristics and toxicity of NMs have not been defined. The fish embryo toxicity test (FET) has been conducted extensively to evaluate the toxicity of NMs as an alternative to a whole-body test in fish. In this study, we collected and analyzed the trends of nanotoxicity on the early development of freshwater fish. The model nanomaterials are carbon NMs ($C_{60},\;C_{70},\;C_{60}$(OH)n and carbon nanotube). Their adverse effects were extensively investigated based on the properties of NMs, test species, and diverse exposure conditions.

Keywords

References

  1. 이우미, 안윤주(2010). 수환경에서 나노입자의 생태독성 연구동향, 수질보전 한국물환경학회지, 26(4), pp. 566-573.
  2. Alvarez, M., Bejar, J., Chen, S., and Hong, Y. (2007). Fish ES Cells and Applications to Biotechnology, Marine Biotechnology, 9(2), pp. 117-127. https://doi.org/10.1007/s10126-006-6034-4
  3. Bakry, R., Vallant, R. M., Najam-Ul-Haq, M., Rainer, M., Szabo, Z., Huck C. W., and Bonn, G. K. (2007). Medicinal Applications of Fullerenes, Internatinal Journal of Nanomedicine, 2(4), pp. 639-649.
  4. Beuerle, F., Witte, P., Hartnagel, R., Parng, C., and Hirsch, A. (2007). Cytoprotective Activities of Water-Soluble Fullerenes in Zebrafish Models, Journal of Experimental Nanoscience, 2(3), pp. 147-170. https://doi.org/10.1080/17458080701502091
  5. Cheng, J., Flahaut, E., and Cheng, S. H. (2007). Effect of Carbon Nanotubes on Developing Zebrafish (Danio rerio) Embryos, Environmental Toxicology and Chemistry, 26(4), pp. 708-716. https://doi.org/10.1897/06-272R.1
  6. Colvin, V. L. (2003). The Potential Environmental Impact of Engineered Nanomaterials, Nature biotechnology, 21(10), pp. 1166-1170. https://doi.org/10.1038/nbt875
  7. Daroczi, B., Kari, G., McAleer, M. F., Wolf, J. C., Rodeck, U., and Dicker, A. P. (2006). In Vivo Radioprotection by the Fullerene Nanoparticle DF-1 as Assessed in a Zebrafish Model, Clinical Cancer Research, 12(23), pp. 7086-7091. https://doi.org/10.1158/1078-0432.CCR-06-0514
  8. Embry, M. R., Belanger, S. E., Braunbeckc, T. A., Galay- Burgosd, M., Haldere, M., Hintonf, D. E., Leonardg, M. A., Lillicraph, A., Norberg-Kingi, T., and Whale, G. (2010). The Fish Embryo Toxicity Test as an Animal Alternative Method in Hazard and Risk Assessment and Scientific Research, Aquatic Toxicology, 97(2), pp. 79-87. https://doi.org/10.1016/j.aquatox.2009.12.008
  9. Giacalone, F. and Martin, N. (2006). Fullerene Polymers: Synthesis and Properties, Chemical Reviews, 106(12), pp. 5136-5190. https://doi.org/10.1021/cr068389h
  10. Harper, S., Usenko, C., Hutchison, J. E., Maddux, B. L. S., and Tanguay, R. L. (2008). In Vivo Biodistribution and Toxicity Depends on Nanomaterial Composition, Size, Surface Functionalisation and Route of Exposure, Journal of Experimental Nanoscience, 3(3), pp. 195-206. https://doi.org/10.1080/17458080802378953
  11. Hu, Y.-L., Qi, W., Han, F., Shao, J.-Z., and Gao, J.-Q. (2011). Toxicity Evaluation of Biodegradable Chitosan Nanoparticles Using a Zebrafish Embryo Model, International Journal of Nanomedicine, 6(1), pp. 3351-3359.
  12. Jovanovic, B., Ji, T., and Palic, D. (2011). Gene Expression of Zebrafish Embryos Exposed to Titanium Dioxide Nanoparticles and Hydroxylated Fullerenes, Ecotoxicology and Environmental Safety, 74(6), pp. 1518-1525. https://doi.org/10.1016/j.ecoenv.2011.04.012
  13. Kashiwada, S. (2006). Distribution of Nanoparticles in the See-Through Medaka (Oryzias latipes), Environmental Health Perspectives, 114(11), pp. 1697-1702.
  14. Kim, K.-T., Jang, M.-H., Kim, J.-Y., and Kim, S.D. (2010). Effect of Preparation Methods on Toxicity of Fullerene Water Suspensions to Japanese Medaka Embryos, Science of the Total Environment, 408(22), pp. 5606-5612. https://doi.org/10.1016/j.scitotenv.2010.07.055
  15. King-Heiden, T. C., Dengler, E., Kao, W. J., Heideman, W., Peterson, R. E. (2007). Developmental Toxicity of Low Generation PAMAM Dendrimers in Zebrafish, Toxicology and Applied Pharmacology, 225(1), pp. 70-79. https://doi.org/10.1016/j.taap.2007.07.009
  16. Langea, M., Gebauera, W., Markla, J., and Nagel, R. (1995). Comparison of testing acute Toxicity on Embryo of Zebrafish, Brachydanio rerio and RTG-2 Cytotoxicity as Possible Alternatives to the Acute Fish Test, Chemosphere, 30(11), pp. 2087-2102. https://doi.org/10.1016/0045-6535(95)00088-P
  17. Manabe, M., Tatarazako, N., and Kinoshita, M. (2011). Uptake, Excretion and Toxicity of Nano-Sized Latex Particles on Medaka (Oryzias latipes) Embryos and Larvae, Aquatic Toxicology, 105(3-4), pp. 576-581. https://doi.org/10.1016/j.aquatox.2011.08.020
  18. Scholz, S., Fischer, S., Gündel, U., Kuster, E., Luckenbach T., and Voelker, D. (2008). The Zebrafish Embryo Model in Environmental Risk Assessment-Applications beyond Acute Toxicity Testing, Environmental Science and Pollution Research, 15(5), pp. 394-404. https://doi.org/10.1007/s11356-008-0018-z
  19. United Nations Environment Program (2007). Buildings and Climate Change: Status, Challenges and Opportunities, UNEP Geo Year Book 2007, United Nations Environment Programme, Nairobi, Kenya, pp. 61-70.
  20. Usenko, C. Y., Harper, S. L. and Tanguay, R. L. (2007). In Vivo Evaluation of Carbon Fullerene Toxicity Using Embryonic Zebrafish, Carbon, 45(9), pp. 1891-1898. https://doi.org/10.1016/j.carbon.2007.04.021
  21. Usenko, C. Y., Harper, S. L. and Tanguay, R. L. (2008). Fullerene $C_{60}$ Exposure Elicits an Oxidative Stress Response in Embryonic Zebrafish, Toxicology and Applied Pharmacology, 229(1), pp. 44-55. https://doi.org/10.1016/j.taap.2007.12.030
  22. Yan, X. M., Shi, B. Y., Wang, D. S. and Tang, H. X. (2008). The Eco-Toxic Aspects of Aqueous Nano-$C_{60}$ Fullerenes, Progress in Chemistry, 20, pp. 422-428.
  23. Yan, X. M., Zha, J. M., Shi, B. Y., Wang, D. S., Wang, Z. J. and Tang, H. X. (2010). In Vivo Toxicity of Nano-$C_{60}$; Aggregates Complex with Atrazine to Aquatic Organisms, Chinese Science Bulletin, 55(4), pp. 339-345. https://doi.org/10.1007/s11434-009-0702-5
  24. Zhu, X., Zhu, L., Li, Y., Duan, Z., Chen, W. and Alvarez, P. J. J. (2007). Developmental Toxicity in Zebrafish (Danio rerio) Embryos after Exposure to Manufactured Nanomaterials: Buckminsterfullerene Aggregates ($nC_{60}$) and Fullerol, Environmental Toxicology and Chemistry, 26(5), pp. 976-979. https://doi.org/10.1897/06-583.1