• 제목/요약/키워드: eco-friendly concrete

검색결과 189건 처리시간 0.025초

전기로 슬래그를 활용한 인공리프용 친환경콘크리트의 공학적 성능 및 적용성 (Engineering Performance and Applicability of Eco-Friendly Concrete for Artificial Reefs Using Electric Arc Furnace Slags)

  • 조영진;최세휴
    • 대한토목학회논문집
    • /
    • 제35권3호
    • /
    • pp.533-544
    • /
    • 2015
  • 해양환경에 노출된 콘크리트는 육상에서 건설되는 콘크리트와 달리 해풍, 조력, 파도, 파랑 등에 의한 물리적 작용과 해수의 $SO_4{^{2-}}$, $Cl^-$$Mg^{2+}$ 이온 등에 의한 화학적 침식작용 및 동결융해 등 가혹한 환경에 노출되어 콘크리트의 내구성을 크게 저하시킨다. 해중 콘크리트의 대규모 시공은 콘크리트의 강도손실은 물론 알칼리(pH) 및 중금속 등 환경유해물질이 용출될 수 있어 이에 대한 충분한 검토와 연구가 필요한 실정이다. 본 연구에서는 전기로 환원슬래그로부터 CSA 자극제를 개발하고 전기로 산화슬래그를 콘크리트용 골재로 활용하여 인공리프용 친환경콘크리트를 개발하였다. 초기강도는 Normal concrete보다 낮게 나타나 친환경콘크리트의 초기강도 품질향상을 위한 추가적인 연구가 필요하였으며, 친환경콘크리트의 해수저항성은 양생일 1년 대비 평균 강도손실이 8~9% 발생하였다. 고함량 고로슬래그 미분말과 고비중 전기로 산화슬래그 골재를 사용한 친환경콘크리트를 동결융해저항성 재료로써 충분히 활용할 수 있는 가능성을 확인하였다. 친환경콘크리트의 중금속 용출특성은 콘크리트의 수화반응을 통한 경화과정에서 중금속 성분은 화학적 결합을 통해 고정화되기 때문에 환경유해성 기준 이하이거나 검출되지 않아 유해물질 용출에 안전하다는 것을 확인하였다.

친환경 경량콘크리트를 이용한 프리캐스트 콘크리트 제작 (Production of Precast Concrete using Eco-friendly Lightweight Concrete)

  • 이수형;이한백
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2016년도 춘계 학술논문 발표대회
    • /
    • pp.179-180
    • /
    • 2016
  • This study has a purpose of producing precast concrete for rapid construction of urban railway system. However, previous precast concrete has problem of its weight itself and there has been a keen interest in effect of carbon emission reduction and eco-friendly in our society. Therefore, in order to solve these two problems, we are about to produce precast concrete using lightweight aggregate and eco-lightweight concrete, with which much mineral had been replaced. As a result, we could confirm that it was possible to produce RMC B/P production satisfying the requirement performance of eco-lightweight concrete, which is replaced with a great amount of mineral for reduction of precast concrete's weight and environmental performance. Also, by confirming the possibility of producing precast concrete which lightweight concrete is used, if producing precast concrete by using eco-lightweight concrete, it would be effective to avoid destruction of environment and much useful to use multiple tower crane when constructing. Afterward, we will proceed our study by constructing precast concrete at which eco-lightweight concrete is used for continuous quality improvement.

  • PDF

고황산염 시멘트를 활용한 저탄소 친환경 콘크리트 개발 (Development of low-carbon eco-friendly concrete using super-sulfated cement)

  • 기전도;이상현;김영선;전현수;석원균;양완희
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 가을학술발표대회논문집
    • /
    • pp.199-200
    • /
    • 2023
  • Eco-friendly concrete contains only 5% of cement yet achieves equal or greater strength compared to conventional concrete, reducing salt-attack impact and hydration heat by more than 30% and ensuring higher construction quality for underground structures. Furthermore, eco-friendly concrete can reduce up to 90% of carbon dioxide emissions compared to traditional concrete, enabling a reduction of approximately 6,000 tons of carbon emissions for 1,000 of apartment units construction. This is equivalent to planting around 42,000 trees

  • PDF

시험방법에 따른 친환경 경량콘크리트의 상대동탄성 계수 비교 (Relative Dynamic Modulus of Elasticity Comparison of the Eco-friendly Lightweight Concreate According to the Experimental Method)

  • 이수형;이한백
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2016년도 춘계 학술논문 발표대회
    • /
    • pp.181-182
    • /
    • 2016
  • We developed eco-friendly lightweight concrete in order to apply eco-friendly lightweight concrete into structural wall or slab of shallow depth urban railway system. However, since lightweight aggregate has different structural feature of porous and it has been overvalued at current KS standard when applied, we did compare the characteristics of freezing and thawing of normal weight aggregate concrete by comparative test method(KS, ASTM). According to test method, there was a big difference of dynamic elastic modulus in lightweight concrete rather than in normal weight aggregate concrete. The big absorption factor in lightweight aggregate is main reason for that. For more detail, in KS law in which only 14 days water curing is carried out, the big amount of moisture in lightweight aggregate is frozen and high heaving pressure occurs and finally that lead to destruction of lightweight concrete. Therefore, it is considered that in case of lightweight concrete, resistibility against freezing and thawing has been undervalued in domestic KS law compared to ASTM law, which is overseas standard. So, a variety of examination about testing criteria and rule would be necessary for exact assessment of lightweight concrete.

  • PDF

콘크리트의 에코효율성 평가방법 제안에 관한 연구 (Propose of Eco-efficiency Evaluation Method for Concrete)

  • 김태형
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2016년도 춘계 학술논문 발표대회
    • /
    • pp.187-188
    • /
    • 2016
  • The purpose of this study is to develop a method of evaluating eco-efficiency of concrete based on environmental load emission, manufacturing cost, and durability in the concrete production process. Eco-efficiency is an advanced concept used to evaluate eco-friendliness of concrete. This technique intends to produce environment-friendly and highly durable concrete while minimizing environmental load on the ecosystem and manufacturing cost based on the results of service life assessment on concrete. This technique can be utilized to efficiently evaluate sustainability of concrete and find methods to improve it. Furthermore, the vision of this study is to contribute to implementation of environment-friendly concrete and construction industry.

  • PDF

우리나라 친환경자동차산업 활성화를 위한 정책방안 (Policy Measures to Promote Eco-Friendly Vehicle Industry in Korea)

  • 김혜정;박선경
    • 한국기후변화학회지
    • /
    • 제8권1호
    • /
    • pp.41-50
    • /
    • 2017
  • As serious consequences of climate change became indisputable, vehicles based on fossil fuel has to be shifted toward more sustainable way to drastically reduce carbon emissions. Eco-friendly vehicles contribute mitigating climate change through reducing the greenhouse gas emissions. The goal of this research is to find ways to promote the eco-friendly vehicle industry in Korea. In order to achieve this goal, surveys are collected from the professionals of eco-friendly vehicle industry, and analyzed through Delphi method. Results show that the first thing is to promote the eco-friendly vehicle market by introducing the economic incentives. The second thing is to allow more emission credit for eco-friendly vehicle manufacturers. The third thing is to build more concrete infrastructure for the eco-friendly vehicles. The increase of the number of the electric or hydrogen charging system would be one of the good examples of the infrastructure. The fourth thing is that the government supports the research & development of eco-friendly vehicles. The fifth is to regulate that the government agency is mandatory to use the eco-friendly vehicles. The sixth thing is to provide the low-carbon certification for eco-friendly vehicles. The seventh thing is to support advertising the eco-friendly vehicles. The results from this research can be used as a guideline to make policies to stimulate the eco-friendly vehicle industry in Korea.

폐섬유를 활용한 친환경 바탕 콘크리트의 복합열화 저감 최적 배합에 관한 연구 (A Study on the Optimum Mixture for Reducing Combined Deterioration of Eco-Friendly Concrete Using Waste Fibe)

  • 김대건
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 봄 학술논문 발표대회
    • /
    • pp.37-38
    • /
    • 2023
  • As one of the resource recovery projects, this study aims to select natural fibers and synthetic fibers that can be used for concrete mixing among waste fibers and reuse them for the base concrete mixture. Using waste fiber, we seek a solution to the problem of reduced fluidity and hardening time of fiber-reinforced concrete and find the optimal mix of the ground concrete mixed with waste fiber.

  • PDF

Compressive strength estimation of eco-friendly geopolymer concrete: Application of hybrid machine learning techniques

  • Xiang, Yang;Jiang, Daibo;Hateo, Gou
    • Steel and Composite Structures
    • /
    • 제45권6호
    • /
    • pp.877-894
    • /
    • 2022
  • Geopolymer concrete (GPC) has emerged as a feasible choice for construction materials as a result of the environmental issues associated with the production of cement. The findings of this study contribute to the development of machine learning methods for estimating the properties of eco-friendly concrete to help reduce CO2 emissions in the construction industry. The compressive strength (fc) of GPC is predicted using artificial intelligence approaches in the present study when ground granulated blast-furnace slag (GGBS) is substituted with natural zeolite (NZ), silica fume (SF), and varying NaOH concentrations. For this purpose, two machine learning methods multi-layer perceptron (MLP) and radial basis function (RBF) were considered and hybridized with arithmetic optimization algorithm (AOA), and grey wolf optimization algorithm (GWO). According to the results, all methods performed very well in predicting the fc of GPC. The proposed AOA - MLP might be identified as the outperformed framework, although other methodologies (AOA - RBF, GWO - RBF, and GWO - MLP) were also reliable in the fc of GPC forecasting process.

실내디자인 교육의 친환경 교육과정 현황에 관한 연구 -4년제 대학교의 교육과정을 중심으로- (A Study on the eco-friendly design curriculum in the interior design education - Focus on the curriculum of 4year Universities -)

  • 이경은;허성은
    • KIEAE Journal
    • /
    • 제7권6호
    • /
    • pp.45-52
    • /
    • 2007
  • The concern and recognition of the energy, environment, conservation of natural resources of the world today are raising, and sustainable development can't be considered in a way of separating development from environment any more. For sustainable development, a new educational infrastructure construction and paradigm coping with new environment through the whole education are needed. Accordingly, this research analyzed eco-friendly design curriculum among interior design major of 4year universities to help with reestablishing educational goal as a model for eco-friendly design curriculum development. According to this research, environment related subject were 91, the rate of 16.4% among total 1492 interior designs major, and among them, eco-friendly design related subjects were 15, which is the 6.4% of 91 environment related subjects, and which is 1.0% among total interior designs, through which we could see that eco-friendly design related subjects were very light weight in the total interior designs. So, the reasonable and concrete reform of eco-friendly design related subjects in 4year universities interior design curriculum seems to be urgent, and diverse eco-friendly design related subjects needed to be developed and established.

친환경 UM수지를 사용한 폴리머 시멘트 모르타르의 강도 및 내구성에 관한 연구 (A Study on the Strength and Durability of Polymer-Modified Mortars using Eco-friendly UM resin)

  • 권민호;김진섭;박수철
    • 한국산학기술학회논문지
    • /
    • 제14권2호
    • /
    • pp.943-948
    • /
    • 2013
  • 본 연구에서는 콘크리트의 내구수명 개선을 위한 친환경 수지인 UM수지 화합물을 혼합한 시멘트 모르타르의 특성을 연구하였다. 친환경수지인 UM수지를 일반 시멘트 모르타르와 일정비율로 혼합하였다. UM수지를 혼합한 폴리머 시멘트 모르타르에 대하여 압축강도, 쪼갬인장강도, 휨강도, 흡수율 및 내약품성 실험을 수행하였다. 재료실험결과 친환경 수지인 UM수지를 함유한 시멘트 모르타르는 압축강도와 쪼갬인장강도는 감소하는 반면 휨강도와 흡수율 및 내약품성에서는 성능이 개선되었다. 친환경 UM수지 폴리머 시멘트 모르타르는 콘크리트 내구성 보강성능이 우수하였다.