• Title/Summary/Keyword: earth retaining wall

Search Result 371, Processing Time 0.027 seconds

Tension Crack and Lateral Pressure on Gravity Wall Backfilled by Cohesive Soil : Undrained Analysis (점성토로 뒤채움된 중력식옹벽에서의 인장균열 및 수평토압 : 비배수 해석)

  • 정성교;김형수
    • Geotechnical Engineering
    • /
    • v.13 no.4
    • /
    • pp.135-148
    • /
    • 1997
  • Coulomb's theory has been usually used in practice to obtain lateral earth pressure against retaining wall. Such theory is based in the assumption that the lateral pressure is a tai angular distribution, since the point of applying the lateral thrust cannot be obtained by using it. However, the results of laboratory and field tests showed that the lateral pressure was not a triangular but a nonlinear distribution. To overcome the drawback of the Coulomb's theory, the different theoretical approaches(Handy, 1985. Kingsley, 1989 : Kellogg, 1993, Chung et at,1993, 1996a) were performed for gravity wall backfilled by cohesionless soil. On the other hand, for retaining wall backfilled by ,cohesive soil, theoretical analyses were carried out only on the basis of the Rankine's or Coulomb's concepts, but the equations showed different results. Here was newly derived the equations of lateral pressures under undrained condition against gravity wall backfilled by cohesive soil. They were based on the Coulomb's wedge, adopted the arching concept. Some of the equations were derived by neglecting tension crack, while the others by considering it. Comparative results for applying different examples showed that the equation considering tension crack might be reasonable.

  • PDF

A Case Study on Design of Geosynthetic-Reinforced Segmental Retaining Walls (다단식 보강토 옹벽 설계사례에 관한 고찰)

  • Park, Si-Sam;Cho, Sam-Deok;Park, Du-Hee;Chang, Ki-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.168-175
    • /
    • 2008
  • The method of reinforced earth walls has grown remarkably and the frequency of utilization has been increased on a national scale thereafter introduced in the middle 1980s in Korea. Furthermore the construction case of the extensive Geosynthetic-Reinforced Segmental Retaining Walls had been increased. Currently, the design criterion of FHWA and NCMA mainly used in Korea suggest determining the horizontal distance of the upper/lower retaining wall based on the study results of the internal stability and the external stability of Segmental Retaining Walls but in many cases are not suitable for the actual situation in Korea. Therefore, in this study reviewed the design criterion of Geosynthetic-Reinforced Segmental Retaining Walls, performed the internal and external stability in Paju, Gyeonggi-do based on the design criterion of FHWA and NCMA, suggested the modified design criterion of FHWA with analyzing the results, and performed the stability analysis for the internal and external stability and the compound failure. Moreover for the confirmation of the modified FHWA design standard, the suggestion and the analysis of the numerical analysis approaching method using shear strength reduction technique were performed and the design cases utilized the modified FHWA design standard based on the study analysis were introduced.

  • PDF

Behavior of Retaining wall near Rigid slopes (강성사면에 인접한 옹벽의 거동에 관한 연구)

  • Yoo, Nam-Jae;Lee, Myoung-Woog;Park, Byoung-Soo
    • Journal of Industrial Technology
    • /
    • v.18
    • /
    • pp.405-415
    • /
    • 1998
  • This thesis is an experimental and numerical research on bearing capacity acting retaining walls close to rigid slopes with stiff angles. Experiments were performed with changing the roughness of adjacent slope to the wall, its inclination, distance between wall and slope. Vertical stress and applied surcharge loads were measured by miniature earth cells and a load cel respectively. Stress distribution Vertical Settlement of surcharge load of rigid model footing were measured by LVDTs. Bearing capacities of surcharge loads were compared with theoretical estimations by using several different methods of limit equilibrium and numerical analysis. For limit equilibrium methods, the modified silo and the wedge theories, proposed by Chung sung gyo and Chung in gyo (1994) were used to analyze test results Based on those modified theories, the particular solution with the boundary condition of surcharge loads on the surface of backfill was obtained to find the stress distributions acting in the backfill and to compare with test results. From results of surcharge test with model wall being very close to the slope, analyzed results by the modified silo theory and to be in the better agreements than other methods.

  • PDF

Centrifuge Model Experiments on Behavior of Reinforced Earth Retaining Walls A Study due to Variation of Reinforcements (보강토 옹벽의 거동에 대한 원심모형실험 -보강재 변화에 의한 연구)

  • Heo, Yol;Ahn, Sang-Ro;Lee, Cheo-Keun
    • Geotechnical Engineering
    • /
    • v.9 no.4
    • /
    • pp.45-54
    • /
    • 1993
  • In this paper, the behaviors of reinforced earth retaining walls according to material properties of reinforcement were performed through the centrifuge model tests. Skin element was used flexible aluminum plate in the process of tests. And reinforcements were used with aluminum foil strips and non -woven polyester sheets. As a result of it, model retaining wall utilizing non-woven polyester sheets than aluminum foil strips was supported at high stress level, and maximum horizontal displacement value of skin element was 0.6H height at model walls. In the other hand, coefficient relation diagram for evaluation of horizontal displacement according to skin element location was proposed using test results.

  • PDF

Effect of Foundation Stiffness on Behavior of Soil-reinforced Segmental Retaining Walls (기초지반의 강성이 보강토 옹벽의 거동에 미치는 영향)

  • 유충식;김주석
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.4
    • /
    • pp.7-19
    • /
    • 2002
  • This paper presents the results of an investigation on the effect of foundation stiffness on the performance of soil-reinforced segmental retaining walls (SRWalls). Laboratory model tests were performed using a reduced-scale physical model to capture the fundamentals of the manner in which the foundation stiffness affects the behavior of SRWalls. A series of finite-element analyses were additionally performed on a prototype wall in order to supplement the findings from the model tests and to examine full-scale behavior of SRWalls encountered in the field. The results of the present investigation indicate that lateral wall displacements significantly increase with the decrease of the foundation stiffness. Also revealed is that the increase in wall displacements is likely to be caused by the rigid body movement of the reinforced soil mass with negligible internal deformation within the reinforced soil mass. The findings from this study support the current design approaches, in which the problem concerning the foundation condition are treated in the frame work of the external stability rather than the internal stability. The implications of the findings from this study to current design approaches are discussed in detail.

Behavior of Soil-reinforced Retaining Walls in Tiered Arrangement (계단식 보강토 옹벽의 거동 특성)

  • Yoo, Choong-Sik;Kim, Joo-Suk
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.3
    • /
    • pp.61-72
    • /
    • 2002
  • This paper presents the results of investigation on the behavior of soil-reinforced segmental retaining walls in tiered arrangement using the finite element method of analysis. 2D finite element analyses were performed on tiered walls with two levels of offset distance. Cases with equivalent surcharge as suggested by the NCMA design guideline were additionally analyzed in an attempt to confirm the appropriateness of the equivalent surcharge model adopted by NCMA. Deformation characteristics of a tiered wall with small offset distance suggest a compound mode of failure and support current design approaches requiring a global slope stability analysis for design. Also revealed is that the interaction between the upper and lower walls significantly affects not only the performance of the lower wall but also the upper wall, suggesting that the upper walls should also be designed with due consideration of the interaction.

Field Measurement and Numerical Approach for Lateral Deformation of Retaining Wall (흙막이벽에 발생하는 수평변위의 현장계측과 수치해석적 접근)

  • Do, Jongnam;Wrryu, Woongryeal;An, Yihwan;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.2
    • /
    • pp.61-68
    • /
    • 2010
  • Recently, it is a trend of the underground excavation to become larger and deeper for more effective use of available space and with the advent of new excavation technologies. The ground typically has a complex stratigraphy. The excavation can lead to large deformation in the nearby structures and large earth pressure on the wall. This can lead to serious problem in the stability of the wall. For the retaining wall to be safely constructed, it is important that the stratigraphy and engineering properties of the ground be accurately estimated, based on the excavation plan and appropriate excavation method. This study uses the measured field data and numerical results to characterize the characteristics of the lateral deformation of the retaining wall. A touredof six field data were analysed. SUNEX, a numerical program which uses the elasto-plastic model to represent the soil, was used. It was shown that the measured deformations exceeded the proposed values for shallow excavations. Overall, the maximum lateral deformation was within the proposed value and hence, the walls were analyzed as safe.

Quasi-Three Dimensional Stability Analysis of the Geosynthetic-Reinforced Soil Retaining Wall System (GRS-RW 보강토벽체 공법의 준3차원 안정해석)

  • 김홍택;박준용
    • Geotechnical Engineering
    • /
    • v.14 no.4
    • /
    • pp.177-204
    • /
    • 1998
  • In the present study, a method of quasi-three dimensional stability analysis is proposed for a systematic design of the GRS-RW(Geosynthetic-Reinforced Soil Retaining Wall) system based on the postulated three dimensional failure wedge. The proposed method could be applied to the analysis of the stability of both the straight-line and cove-shaped are. As with skew reinforcements. Maximum earth thrust expected to act on the rigid face wall is assumed to distribute along the depth, and wall displacements are predicted based on both the assumed compaction-induced earth pressures and one dimensional finite element method of analysis. For a verification of the procedure proposed in the present study, the predicted wall displacements are compared with chose obtained from the RMC tests in Canada and the FHWA tests in U.S.A. In these comparisons the wall displacements estimated by the methods of Christopher et at. and Chew & Mitchell are also included for further verification. Also, the predicted wall displacements for the convex-shaped zone reinforced with skew reinforcements are compared with those by $FLAC_{3D}$ program analyses. The assumed compaction-induced earth pressures evaluated on the basic of the proposed method of analysis are further compared with the measurements by the FHWA best wall. A parametric stduy is finally performed to investigate the effects of various design parameters for the stability of the GRS-RW system

  • PDF

Time Series Analysis for Predicting Deformation of Earth Retaining Walls (시계열 분석을 이용한 흙막이 벽체 변형 예측)

  • Seo, Seunghwan;Chung, Moonkyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.2
    • /
    • pp.65-79
    • /
    • 2024
  • This study employs traditional statistical auto-regressive integrated moving average (ARIMA) and deep learning-based long short-term memory (LSTM) models to predict the deformation of earth retaining walls using inclinometer data from excavation sites. It compares the predictive capabilities of both models. The ARIMA model excels in analyzing linear patterns as time progresses, while the LSTM model is adept at handling complex nonlinear patterns and long-term dependencies in the data. This research includes preprocessing of inclinometer measurement data, performance evaluation across various data lengths and input conditions, and demonstrates that the LSTM model provides statistically significant improvements in prediction accuracy over the ARIMA model. The findings suggest that LSTM models can effectively assess the stability of retaining walls at excavation sites. Additionally, this study is expected to contribute to the development of safety monitoring systems at excavation sites and the advancement of time series prediction models.

Assessment of Equivalent Heights of Soil for the Lateral Earth Pressure Against Retaining Walls Due to Design Truck Load by 3D Numerical Analysis (3차원 수치해석에 의한 표준트럭하중에 의해 옹벽에 작용하는 수평토압의 등가높이 산정)

  • Seo, Seunghwan;Jin, Hyunsik;Kim, Dongwook;Chung, Moonkyung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.4
    • /
    • pp.75-85
    • /
    • 2019
  • The lateral load from traffic depends on standard truck's axle loads and locations, loading distance from the inner wall. The method of limit state design has been adopted and used for design of roads in the Republic of Korea since 2015. The concept of equivalent height of soil accounting for traffic loading is often used for design of retaining walls to quantify the traffic loads transmitted to the inner wall faces. Due to the different characteristics of the standard design trucks between Korea and US (AASHTO), the direct use of the guidelines from AASHTO LRFD leads to incorrect estimation of traffic load effects on retaining walls. This paper presents the results of evaluation of equivalent height of soil to reflect the standard truck of the nation, based on the findings from analytical solutions using 3D finite element method. Compare to US, the standard truck loading has a structure where the axle load is concentrated so that the equivalent load height is estimated to be slightly larger than AASHTO for lower retaining wall height. It would be reasonable to present the equivalent load height in Korea more conservatively than AASHTO in terms of securing long term stability of the retaining wall structure.