DOI QR코드

DOI QR Code

Assessment of Equivalent Heights of Soil for the Lateral Earth Pressure Against Retaining Walls Due to Design Truck Load by 3D Numerical Analysis

3차원 수치해석에 의한 표준트럭하중에 의해 옹벽에 작용하는 수평토압의 등가높이 산정

  • Seo, Seunghwan (Department of Infrastructure Safety Research (ISR), Korea Institute of Civil Engineering and Building Technology (KICT)) ;
  • Jin, Hyunsik (HNG Consultants co., Ltd.) ;
  • Kim, Dongwook (Department of Civil and Environmental Engineering, Incheon National University) ;
  • Chung, Moonkyung (Dept. of ISR., KICT)
  • Received : 2019.11.08
  • Accepted : 2019.11.20
  • Published : 2019.12.30

Abstract

The lateral load from traffic depends on standard truck's axle loads and locations, loading distance from the inner wall. The method of limit state design has been adopted and used for design of roads in the Republic of Korea since 2015. The concept of equivalent height of soil accounting for traffic loading is often used for design of retaining walls to quantify the traffic loads transmitted to the inner wall faces. Due to the different characteristics of the standard design trucks between Korea and US (AASHTO), the direct use of the guidelines from AASHTO LRFD leads to incorrect estimation of traffic load effects on retaining walls. This paper presents the results of evaluation of equivalent height of soil to reflect the standard truck of the nation, based on the findings from analytical solutions using 3D finite element method. Compare to US, the standard truck loading has a structure where the axle load is concentrated so that the equivalent load height is estimated to be slightly larger than AASHTO for lower retaining wall height. It would be reasonable to present the equivalent load height in Korea more conservatively than AASHTO in terms of securing long term stability of the retaining wall structure.

차량하중에 의해 옹벽에 전달되는 수평토압은 등가상재하중높이로 표현하며, 표준트럭의 축하중 크기와 위치에 따라 그 영향이 달라진다. 한계상태설계법은 2015년부터 국내 도로교 설계에 적용되어 왔다. 하지만 우리나라 실정을 고려한 토압하중계수(등가상재하중높이)가 제시되어 있지 않아 설계에 적용하는데 어려움이 있다. 본 연구에서는 국내 표준트럭의 축하중 크기 및 위치를 반영한 등가상재하중높이를 산정하였다. 3차원 수치해석 방법으로 등가상재하중높이를 산정하였으며, AASHTO 기준치와 차별화된 등가상재하중 높이를 제시하였다. 우리나라 표준트럭의 축하중은 미국과 달리 축하중이 집중되는 구조를 가지고 있어 옹벽의 높이가 낮은 경우 등가상재하중높이가 AASHTO에서 제안한 값보다 다소 크게 평가 되었다. 따라서 우리나라 교통하중으로부터 도출된 등가상재하중높이는 옹벽 구조물의 장기 안정성을 확보하는 측면에서 AASHTO 기준치보다 보수적으로 제시하는 것이 합리적일 것이다.

Keywords

References

  1. AASHTO (2012), "LRFD Bridge Design Specifications", 6th Edition American Association of State Highway and Transportation Officials, Washington DC.
  2. Holl, D. L. (1940), "Stress transmission in earths" Proc., Highway Research Board, Washington, D.C., 20, pp.709-721.
  3. Kim, J. S. and Barker, R. M. (2002), "Effect of live load surcharge on retaining walls and abutments", Journal of Geotechnical and Geoenvironmental Engineering, Vol.128, No.10, pp.803-813. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:10(803)
  4. Lee, S. D. (2016), "Earth pressure theory", CIR, pp.68-98. (in Korean)
  5. Lee, K., Kim, D. and Chung, M. (2017), "Analysis of lateral earth pressure on retaining wall from traffic load distribution", Journal of Geosynthetics Society, Vol.16, No.4, pp.43-55.
  6. MOCT (2003a), Standard Drawing of Road Wall, MOCT (Ministry of Construction and Transportation). (in Korean)
  7. MOCT (2003b), Comprehensive Report on Standard Drawing of Road Wall, MOCT (Ministry of Construction and Transportation). (in Korean)
  8. MLTMA (2012), Standard of Concrete and Structure, MLTMA (Ministry of Land, Transport and Maritime Affairs). (in Korean)
  9. MOLIT (2016a), Research on Maintenance of Retaining Wall for Reasonable Road, MOLIT (Ministry of Land, Transport and Maritime Affairs). (in Korean)
  10. MOLIT (2016b), Standard of Tunnel Road, MOLIT (Ministry of Land, Transport and Maritime Affairs). (in Korean)
  11. Plaxis VB (2017), Materials Model Manual, PLAXIS Corp., Netherlands.
  12. Poulos, H. G., and Davis, E. G. (1974). "Elastic solutions for soil and rock mechanics", Wiley, New York.