• Title/Summary/Keyword: earth's rotation

Search Result 93, Processing Time 0.129 seconds

The Investigation of Six Grade Students' Preconceptions about the Cause of Seasonal Change (계절 변화의 원인에 대한 초등학교 6학년 학생들의 선개념 조사)

  • Chae, Dong-Hyun
    • Journal of Korean Elementary Science Education
    • /
    • v.30 no.2
    • /
    • pp.204-212
    • /
    • 2011
  • This research is about the six graders' preconceptions in elementary school about a cause of the seasonal change before learning. The result of this research is that the patterns of six graders's preconceptions in elementary school are earth's rotation, earth's revolution, the distance between the earth and the sun and the location factor between the sun and our country, which are mixed up with two more things. Especially many patterns of students explain the seasonal change of our country using the change of location of our country by earth's rotation, the location factor between the earth and the sun and the distance between the earth and the sun by earth's revolution.

Earth Rotation and Earth Tide: Review (지구자전과 지구조석 연구소개)

  • Sung-Ho Na;Yu Yi
    • Geophysics and Geophysical Exploration
    • /
    • v.26 no.4
    • /
    • pp.238-267
    • /
    • 2023
  • Studies on Earth's rotation and tide since the 19th century are briefly summarized. The theories of precession, nutation, polar motion, and periodic/secular changes in the rate of rotation are described individually. In addition, a brief review of the Milankovitch theory - the hypothesis of the relationship between the Earth's spin/orbital rotational state and the ice ages - is given. Finally, Earth's tides and their theoretical models are briefly explained. Some detailed technical content is summarized in the appendices.

The Response of Hadley Cell and Jet Stream to Earth's Rotation Rate (지구 자전속도에 따른 해들리 순환과 제트의 반응)

  • Cho, Chonghyuk;Kim, Seo-Yeon;Son, Seok-Woo
    • Journal of the Korean earth science society
    • /
    • v.40 no.3
    • /
    • pp.203-211
    • /
    • 2019
  • The two key factors controlling the atmospheric general circulation are the equator-to-pole temperature difference and the Coriolis force driven by Earth's rotation. Although the former's role has been extensively examined, little has been reported about the latter's effect. To better understand the atmospheric general circulation, this study investigates the responses of Hadley Cell (HC) and westerly jet to the rotation faster or slower than the present Earth's rotation rate. It turns out that the HC edge and jet position tend to move equatorward and become weaker with increasing rotation rate. In most cases, the HC edge is quasi-linearly related with the jet position except for the extremely slow or fast rotating cases. The HC edge is more inversely proportional to the root of rotation rate than the rotation rate in the range of 1/8 to 8 times of the current Earth's rotation rate. However, such a relationship does not appear in the relationship between HC strength and jet intensity. This result highlights that while the latitudinal structure of atmospheric general circulation can be, to some extent, scaled with the Earth's rotation rate, overall intensity cannot be simply explained by the Earth's rotation rate.

Characters of Perturbation in Earth's Spin Rotation

  • Na, Sung-Ho;Kwak, Younghee
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.159.1-159.1
    • /
    • 2012
  • From the most recent dataset of the earth's spin rotation, we separate different frequency components of its perturbation and analyze their characteristics. Both changes of the earth's spin and pole position are considered.

  • PDF

Research on Pre-service Teachers' Perception in Experiments of Earth's Rotation' by School Level (학교 급별에 적합한 지구의 자전 실험에 대한 예비교사의 인식 연구)

  • Han, Je-jun;Chae, Dong-hyun
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.12 no.3
    • /
    • pp.252-260
    • /
    • 2019
  • The purpose of this study is to assist school science class by investigating effective Earth's rotation experiments of districts by school level. The researcher investigated or developed nine experiments for learning Earth's rotation, and conducted and discussed these experiments with 26 elementary school teachers. Each teachers chose an effective Earth's rotation experiment for the district and wrote the reason. As a result, elementary school teachers chose the experiment that is easy to prepare and to do. And elementary school students are interested in the experiments by conducting them on their own. Middle and high school teachers chose more difficult experiments that could be connected with other concepts. University teachers chose effective experiments based on application of knowledge, active exploration, computer literacy, and difficulty.

Changes in the Earth's Spin Rotation due to the Atmospheric Effects and Reduction in Glaciers

  • Na, Sung-Ho;Cho, Jungho;Kim, Tu-Hwan;Seo, Kiweon;Youm, Kookhyoun;Yoo, Sung-Moon;Choi, Byungkyu;Yoon, Hasu
    • Journal of Astronomy and Space Sciences
    • /
    • v.33 no.4
    • /
    • pp.295-304
    • /
    • 2016
  • The atmosphere strongly affects the Earth's spin rotation in wide range of timescale from daily to annual. Its dominant role in the seasonal perturbations of both the pole position and spinning rate of the Earth is once again confirmed by a comparison of two recent data sets; i) the Earth orientation parameter and ii) the global atmospheric state. The atmospheric semi-diurnal tide has been known to be a source of the Earth's spin acceleration, and its magnitude is re-estimated by using an enhanced formulation and an up-dated empirical atmospheric S2 tide model. During the last twenty years, an unusual eastward drift of the Earth's pole has been observed. The change in the Earth's inertia tensor due to glacier mass redistribution is directly assessed, and the recent eastward movement of the pole is ascribed to this change. Furthermore, the associated changes in the length of day and UT1 are estimated.

TIMING RECORDS OF ANCIENT LUNAR ECLIPSES IN CHINA AND LONG-TERM VARIATION OF THE EARTH'S SPIN SPEED

  • RAN YANBEN;ZHANG PEIYU
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.439-440
    • /
    • 1996
  • The Chinese ancient accounts of timing observations of 48 lunar eclipses and the secular variation of the Earth's spin speed are discussed. A series of ${\Delta}$T expressing the secular deceleration of the Earth's rotation was obtained. The average increase rate of length of the day is about 1.5 milliseconds per century.

  • PDF

Tenth Graders' Ideas concerned with Earth's Rotation according to Interest and Learning style (흥미와 학습양식에 따른 고등학교 1학년 학생들의 지구의 자전 관련 개념)

  • Jeong, Jin-Woo;Jung, Jae-Gu;Moon, Sang-Yeon;Moon, Byoung-Chan
    • Journal of the Korean earth science society
    • /
    • v.25 no.7
    • /
    • pp.532-544
    • /
    • 2004
  • The purpose of this study is to analyze the concept concerned with Earth's rotation as passed by tenth graders whose interest in earth's rotation and learning styles were varied. To examine student's interest in the Earth's rotation, 4students (visual-verbal learning style student with much interest, visual learning style student with much interest, visual learning style student with little interest, and verbal learning style student with little interest) were chosen for study. Personal interview was used for this study. To probe students' conception in varied ways, they were allowed to make gesture and draw pictures through data collection process, except for interviews. And the data were analyzed one by one. The result of this study were as follows: First, the student with much interest was faster to answer the questions about Earth's rotation than the one with little interest. Also he comprehended better and was able to explain reasons coherently. Second, there was little difference according to student's learning style. Third, one of the repeated misconception was direction. For thinking that is the right side is the east side, students have misconception that the sun goes from right to left and stars in north sky move clock-wise.

Earth Pressure Distribution with Rigid Retaining Wall Movements (강성토유벽의 움직임에 따른 토압분포)

  • 강병희;채승호
    • Geotechnical Engineering
    • /
    • v.5 no.1
    • /
    • pp.47-60
    • /
    • 1989
  • Lateral earth Pressure distributions due to the ,randy soil backfill behind the rigid vertical walls for three different wall movement modes are obtained by the elasto-plastic finite element analys of soil deformation, and these earth pressures are compared with both Rankine's and Dubrova's active earth pressures. Thereby, the effects of the magnitude and the mode of wall displacement on the earth pressure distribution are investigated. Three different modes of wall movement considered in this study are the rotation about bottom, the rotation about top and the translation. For the case of the wall rotation about top, the earth pressure distribution is shown as a reverse S-curve-shaped distribution due to the arching effect. Consequently, the point of application of the lateral thrust is much higher than one-third of the wall height from the base. And, comparing the other modes of wall movement, the magnitude and the point of appliestion of the lateral thrust for the wall rotation about top are larger and higher, respectively. The wedge-shaped plastic zone in the backfill at active failure is developed only for the mode of wall rotation about bottom. The lateral earth pressure distributions on the walls with inclined backfill of several different slopes are shown for the mode of wall rotation about bottom.

  • PDF

Learning Effects and Difficulties of Role Play Activities to Learn Earth Rotation and Sun's Apparent Motion (지구 자전과 태양의 겉보기 운동 학습을 위한 역할놀이 활동의 학습 효과 및 학생들이 겪는 어려움)

  • Kim, Seong-Un
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.13 no.1
    • /
    • pp.29-39
    • /
    • 2020
  • In this study, to find out the learning effects and difficulties of role play activities to learn the earth's rotation and the sun's apparent motion, the degree of concept understanding through role play activities, difficulties arising from activities collected by interview, and eye movement during activities are analyzed. 22 fifth graders participated in this study and collected and analyzed experimental behaviors, post-interviews, and eye movement data during the role play of the students. The study found that students could explain the rotation and direction of the Earth through role play activities, but it was difficult to explain the apparent motion of the sun. Since it is difficult to perceive the sun's apparent motion through role play activities, the learning effect of the earth rotation role play activity is low.