• Title/Summary/Keyword: eIF2

Search Result 1,883, Processing Time 0.028 seconds

Extreme Positive Operators from 2 × 2 to 3 × 3 Hermitian Matrices

  • Moon, Byung Soo
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.4 no.1
    • /
    • pp.11-38
    • /
    • 1991
  • Let $E_n$ be the real ordered space of all $n{\times}n$ Hermitian Matrices and let T be a positive linear operator from $E_2$ to $E_3$. We prove in this paper that T is extreme if and only if T is unitarily equivalent to a map of the form $S_z$ for some $z{\in}C^2$ where $S_z$ is defined by $S_z(xx^*)=ww^*$, $w_i=x_iz_i$ for i = 1, 2 and $w_3=0$.

  • PDF

THE STRUCTURE OF SEMIPERFECT RINGS

  • Han, Jun-Cheol
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.2
    • /
    • pp.425-433
    • /
    • 2008
  • Let R be a ring with identity $1_R$ and let U(R) denote the group of all units of R. A ring R is called locally finite if every finite subset in it generates a finite semi group multiplicatively. In this paper, some results are obtained as follows: (1) for any semilocal (hence semiperfect) ring R, U(R) is a finite (resp. locally finite) group if and only if R is a finite (resp. locally finite) ring; U(R) is a locally finite group if and only if U$(M_n(R))$ is a locally finite group where $M_n(R)$ is the full matrix ring of $n{\times}n$ matrices over R for any positive integer n; in addition, if $2=1_R+1_R$ is a unit in R, then U(R) is an abelian group if and only if R is a commutative ring; (2) for any semiperfect ring R, if E(R), the set of all idempotents in R, is commuting, then $R/J\cong\oplus_{i=1}^mD_i$ where each $D_i$ is a division ring for some positive integer m and |E(R)|=$2^m$; in addition, if 2=$1_R+1_R$ is a unit in R, then every idempotent is central.

ON B-ALGEBRAS AND GROUPS

  • Usan, Janez;Zizovic, Malisa
    • East Asian mathematical journal
    • /
    • v.18 no.2
    • /
    • pp.205-209
    • /
    • 2002
  • In the paper the following propositions are proved. 1) If ($Q,{\cdot},e$) is a B-algebra, then there exists a group($Q,A,^{-1}$, 1) such that the following equalities hold e=1 and ${\cdot}=^{-1}A$, where $^{-1}A(x,y)=z{\Longleftrightarrow^{def}}A(z,y)=x$; and 2) If ($Q,A,^{-1}$, e) is a group, then ($Q,^{-1}A$, e) is a B-algebra.

  • PDF

CHARACTERIZATIONS OF THE PARETO DISTRIBUTION BY CONDITIONAL EXPECTATIONS OF RECORD VALUES

  • Lee, Min-Young
    • Communications of the Korean Mathematical Society
    • /
    • v.18 no.1
    • /
    • pp.127-131
    • /
    • 2003
  • Let X$_1$, X$_2$,... be a sequence of independent and identically distributed random variables with continuous cumulative distribution function F(x). X$_j$ is an upper record value of this sequence if X$_j$ > max {X$_1$,X$_2$,...,X$_{j-1}$}. We define u(n)=min{j$\mid$j> u(n-1), X$_j$ > X$_{u(n-1)}$, n $\geq$ 2} with u(1)=1. Then F(x) = 1-x$^{\theta}$, x > 1, ${\theta}$ < -1 if and only if (${\theta}$+1)E[X$_{u(n+1)}$$\mid$X$_{u(m)}$=y] = ${\theta}E[X_{u(n)}$\mid$X_{u(m)}=y], (\theta+1)^2E[X_{u(n+2)}$\mid$X_{u(m)}=y] = \theta^2E[X_{u(n)}$\mid$X_{u(m)}=y], or (\theta+1)^3E[X_{u(n+3)}$\mid$X_{u(m)}=y] = \theta^3E[X_{u(n)}$\mid$X_{u(m)}=y], n $\geq$ M+1$.

CHARACTERIZATIONS OF THE EXPONENTIAL DISTRIBUTION BY ORDER STATISTICS AND CONDITIONAL

  • Lee, Min-Young;Chang, Se-Kyung;Jung, Kap-Hun
    • Communications of the Korean Mathematical Society
    • /
    • v.17 no.3
    • /
    • pp.535-540
    • /
    • 2002
  • Let X$_1$, X$_2$‥‥,X$\_$n/ be n independent and identically distributed random variables with continuous cumulative distribution function F(x). Let us rearrange the X's in the increasing order X$\_$1:n/ $\leq$ X$\_$2:n/ $\leq$ ‥‥ $\leq$ X$\_$n:n/. We call X$\_$k:n/ the k-th order statistic. Then X$\_$n:n/ - X$\_$n-1:n/ and X$\_$n-1:n/ are independent if and only if f(x) = 1-e(equation omitted) with some c > 0. And X$\_$j/ is an upper record value of this sequence lf X$\_$j/ > max(X$_1$, X$_2$,¨¨ ,X$\_$j-1/). We define u(n) = min(j|j > u(n-1),X$\_$j/ > X$\_$u(n-1)/, n $\geq$ 2) with u(1) = 1. Then F(x) = 1 - e(equation omitted), x > 0 if and only if E[X$\_$u(n+3)/ - X$\_$u(n)/ | X$\_$u(m)/ = y] = 3c, or E[X$\_$u(n+4)/ - X$\_$u(n)/|X$\_$u(m)/ = y] = 4c, n m+1.

ON A CHARACTERIZATION OF THE EXPONENTIAL DISTRIBUTION BY CONDITIONAL EXPECTATIONS OF RECORD VALUES

  • Lee, Min-Young
    • Communications of the Korean Mathematical Society
    • /
    • v.16 no.2
    • /
    • pp.287-290
    • /
    • 2001
  • Let X$_1$, X$_2$, … be a sequence of independent and identically distributed random variables with continuous cumulative distribution function F(x). X(sub)j is an upper record value of this sequence if X(sub)j > max {X$_1$, X$_2$, …, X(sub)j-1}. We define u(n) = min {j│j > u(n-1), X(sub)j > X(sub)u(n-1), n $\geq$ 2} with u(1) = 1. Then F(x) = 1 - e(sup)-x/c, x > 0 if and only if E[X(sub)n(n+1) - X(sub)u(n)│X(sub)u(m) = y] = c or E[X(sub)u(n+2) - X(sub)u(n)│X(sub)u(m) = y] = 2c, n $\geq$ m+1.

  • PDF

SURFACES FOLIATED BY ELLIPSES WITH CONSTANT GAUSSIAN CURVATURE IN EUCLIDEAN 3-SPACE

  • Ali, Ahmed T.;Hamdoon, Fathi M.
    • Korean Journal of Mathematics
    • /
    • v.25 no.4
    • /
    • pp.537-554
    • /
    • 2017
  • In this paper, we study the surfaces foliated by ellipses in three dimensional Euclidean space ${\mathbf{E}}^3$. We prove the following results: (1) The surface foliated by an ellipse have constant Gaussian curvature K if and only if the surface is flat, i.e. K = 0. (2) The surface foliated by an ellipse is a flat if and only if it is a part of generalized cylinder or part of generalized cone.

A FINITE ADDITIVE SET OF IDEMPOTENTS IN RINGS

  • Han, Juncheol;Park, Sangwon
    • Korean Journal of Mathematics
    • /
    • v.21 no.4
    • /
    • pp.463-471
    • /
    • 2013
  • Let R be a ring with identity 1, $I(R){\neq}\{0\}$ be the set of all nonunit idempotents in R, and M(R) be the set of all primitive idempotents and 0 of R. We say that I(R) is additive if for all e, $f{\in}I(R)$ ($e{\neq}f$), $e+f{\in}I(R)$. In this paper, the following are shown: (1) I(R) is a finite additive set if and only if $M(R){\backslash}\{0\}$ is a complete set of primitive central idempotents, char(R) = 2 and every nonzero idempotent of R can be expressed as a sum of orthogonal primitive idempotents of R; (2) for a regular ring R such that I(R) is a finite additive set, if the multiplicative group of all units of R is abelian (resp. cyclic), then R is a commutative ring (resp. R is a finite direct product of finite field).

TWO GENERALIZATIONS OF LCM-STABLE EXTENSIONS

  • Chang, Gyu Whan;Kim, Hwankoo;Lim, Jung Wook
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.2
    • /
    • pp.393-410
    • /
    • 2013
  • Let $R{\subseteq}T$ be an extension of integral domains, X be an indeterminate over T, and R[X] and T[X] be polynomial rings. Then $R{\subseteq}T$ is said to be LCM-stable if $(aR{\cap}bR)T=aT{\cap}bT$ for all $0{\neq}a,b{\in}R$. Let $w_A$ be the so-called $w$-operation on an integral domain A. In this paper, we introduce the notions of $w(e)$- and $w$-LCM-stable extensions: (i) $R{\subseteq}T$ is $w(e)$-LCM-stable if $((aR{\cap}bR)T)_{w_T}=aT{\cap}bT$ for all $0{\neq}a,b{\in}R$ and (ii) $R{\subseteq}T$ is $w$-LCM-stable if $((aR{\cap}bR)T)_{w_R}=(aT{\cap}bT)_{w_R}$ for all $0{\neq}a,b{\in}R$. We prove that LCM-stable extensions are both $w(e)$-LCM-stable and $w$-LCM-stable. We also generalize some results on LCM-stable extensions. Among other things, we show that if R is a Krull domain (resp., $P{\upsilon}MD$), then $R{\subseteq}T$ is $w(e)$-LCM-stable (resp., $w$-LCM-stable) if and only if $R[X]{\subseteq}T[X]$ is $w(e)$-LCM-stable (resp., $w$-LCM-stable).