Browse > Article
http://dx.doi.org/10.4134/JKMS.2013.50.2.393

TWO GENERALIZATIONS OF LCM-STABLE EXTENSIONS  

Chang, Gyu Whan (Department of Mathematics University of Incheon)
Kim, Hwankoo (Department of Information Security Hoseo University)
Lim, Jung Wook (Department of Mathematics Sogang University)
Publication Information
Journal of the Korean Mathematical Society / v.50, no.2, 2013 , pp. 393-410 More about this Journal
Abstract
Let $R{\subseteq}T$ be an extension of integral domains, X be an indeterminate over T, and R[X] and T[X] be polynomial rings. Then $R{\subseteq}T$ is said to be LCM-stable if $(aR{\cap}bR)T=aT{\cap}bT$ for all $0{\neq}a,b{\in}R$. Let $w_A$ be the so-called $w$-operation on an integral domain A. In this paper, we introduce the notions of $w(e)$- and $w$-LCM-stable extensions: (i) $R{\subseteq}T$ is $w(e)$-LCM-stable if $((aR{\cap}bR)T)_{w_T}=aT{\cap}bT$ for all $0{\neq}a,b{\in}R$ and (ii) $R{\subseteq}T$ is $w$-LCM-stable if $((aR{\cap}bR)T)_{w_R}=(aT{\cap}bT)_{w_R}$ for all $0{\neq}a,b{\in}R$. We prove that LCM-stable extensions are both $w(e)$-LCM-stable and $w$-LCM-stable. We also generalize some results on LCM-stable extensions. Among other things, we show that if R is a Krull domain (resp., $P{\upsilon}MD$), then $R{\subseteq}T$ is $w(e)$-LCM-stable (resp., $w$-LCM-stable) if and only if $R[X]{\subseteq}T[X]$ is $w(e)$-LCM-stable (resp., $w$-LCM-stable).
Keywords
star-operation; LCM-stable; w-LCM-stable; w(e)-LCM-stable; PvMD; Krull domain;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 T. Akiba, LCM-stableness, Q-stableness and flatness, Kobe J. Math. 2 (1985), no. 1, 67-70.
2 D. D. Anderson and S. J. Cook, Two star-operations and their induced lattices, Comm. Algebra 28 (2000), no. 5, 2461-2475.   DOI   ScienceOn
3 D. D. Anderson, E. G. Houston, and M. Zafrullah, t-linked extensions, the t-class group, and Nagata's theorem, J. Pure Appl. Algebra 86 (1993), no. 2, 109-124.   DOI   ScienceOn
4 D. F. Anderson and G. W. Chang, Overrings as intersections of localizations of an integral domain, preprint.
5 G. W. Chang, *-Noetherian domains and the ring $D[X]N_*$, J. Algebra 297 (2006), no. 1, 216-233.   DOI   ScienceOn
6 J. T. Condo, LCM-stability of power series extensions characterizes Dedekind domains, Proc. Amer. Math. Soc. 123 (1995), no. 8, 2333-2341.
7 D. E. Dobbs, On the criteria of D. D. Anderson for invertible and flat ideals, Canad. Math. Bull. 29 (1986), no. 1, 25-32.   DOI
8 D. E. Dobbs, E. G. Houston, T. G. Lucas, and M. Zafrullah, t-linked overrings and Prufer v-multiplication domains, Comm. Algebra 17 (1989), no. 11, 2835-2852.   DOI   ScienceOn
9 R. Gilmer, An embedding theorem for HCF-rings, Proc. Cambridge Philos. Soc. 68 (1970), 583-587.   DOI
10 R. Gilmer, Finite element factorization in group rings, Ring theory, 47-61, Lecture Notes in Pure and Appl. Math., Vol. 7, Dekker, New York, 1974.
11 R. Gilmer, Multiplicative Ideal Theory, Queen's Papers in Pure Appl. Math. 90, Queen's University, Kingston, Ontario, 1992.
12 J. R. Hedstrom and E. G. Houston, Some remarks on star-operations, J. Pure Appl. Algebra 18 (1980), no. 1, 37-44.   DOI   ScienceOn
13 E. G. Houston and M. Zafrullah, On t-invertibility. II, Comm. Algebra 17 (1989), no. 8, 1955-1969.   DOI   ScienceOn
14 B. G. Kang, *-operations on integral domains, Ph.D. Dissertation, Univ. Iowa 1987.
15 B. G. Kang , Prufer v-multiplication domains and the ring $R[X]N_v$, J. Algebra 123 (1989), no. 1, 151-170.   DOI
16 D. J. Kwak and Y. S. Park, On t-flat overrings, Chinese J. Math. 23 (1995), no. 1, 17-24.
17 H. Uda, LCM-stableness in ring extensions, Hiroshima Math. J. 13 (1983), no. 2, 357-377.
18 A. Mimouni, Integral domains in which each ideal is a w-ideal, Comm. Algebra 33 (2005), no. 5, 1345-1355.   DOI   ScienceOn
19 S. Oda and K. Yoshida, Remarks on LCM-stableness and reflexiveness, Math. J. Toyama Univ. 17 (1994), 93-114.
20 J. Sato and K. Yoshida, The LCM-stability on polynomial extensions, Math. Rep. Toyama Univ. 10 (1987), 75-84.
21 H. Uda , $G_2$-stableness and LCM-stableness, HiroshimaMath. J. 18 (1988), no. 1, 47-52.
22 F. Wang and R. L. McCasland, On w-modules over strong Mori domains, Comm. Algebra 25 (1997), no. 4, 1285-1306.   DOI   ScienceOn
23 H. Yin, F. Wang, X. Zhu, and Y. Chen, w-modules over commutative rings, J. Korean Math. Soc. 48 (2011), no. 1, 207-222.   과학기술학회마을   DOI   ScienceOn
24 M. Zafrullah, Putting t-invertibility to use, Non-Noetherian commutative ring theory, 429-457, Math. Appl., 520, Kluwer Acad. Publ., Dordrecht, 2000.