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TWO GENERALIZATIONS OF LCM-STABLE EXTENSIONS

Gyu Whan Chang, Hwankoo Kim, and Jung Wook Lim

Abstract. Let R ⊆ T be an extension of integral domains, X be an
indeterminate over T , and R[X] and T [X] be polynomial rings. Then R ⊆

T is said to be LCM-stable if (aR∩bR)T = aT∩bT for all 0 6= a, b ∈ R. Let
wA be the so-called w-operation on an integral domain A. In this paper,
we introduce the notions of w(e)- and w-LCM stable extensions: (i)R ⊆ T

is w(e)-LCM-stable if ((aR∩ bR)T )wT
= aT ∩ bT for all 0 6= a, b ∈ R and

(ii) R ⊆ T is w-LCM-stable if ((aR ∩ bR)T )wR
= (aT ∩ bT )wR

for all
0 6= a, b ∈ R. We prove that LCM-stable extensions are both w(e)-LCM-
stable and w-LCM-stable. We also generalize some results on LCM-stable
extensions. Among other things, we show that if R is a Krull domain
(resp., PvMD), then R ⊆ T is w(e)-LCM-stable (resp., w-LCM-stable) if
and only if R[X] ⊆ T [X] is w(e)-LCM-stable (resp., w-LCM-stable).

0. Introduction

Let R ⊆ T be an extension of integral domains, X be an indeterminate over
T , and R[X ] and T [X ] be polynomial rings. As in [10], we say that R ⊆ T is
LCM-stable if (aR ∩ bR)T = aT ∩ bT for all 0 6= a, b ∈ R. Clearly, if T = RS

for a multiplicative subset S of R, then R ⊆ T is LCM-stable. Also, R ⊆ R[X ]
is LCM-stable. This concept was first introduced by Gilmer [10] and has been
studied by many authors [1, 6, 18, 19, 20, 21]. It is known that R is a Prüfer
domain if and only if R ⊆ T is LCM-stable for any domain T containing R [20,
Corollary 1.8]; if R is a GCD-domain, then R ⊆ T is LCM-stable if and only if
T is t-linked over R, if and only if R[X ] ⊆ T [X ] is LCM-stable [20, Corollary
3.7]; and if R is a Krull domain, then R ⊆ T is LCM-stable if and only if
R[X ] ⊆ T [X ] is LCM-stable [21, Theorem 11]. Also, it was noted that R is a
Prüfer domain if and only if R[X ] ⊆ T [X ] is LCM-stable for each domain T

containing R as a subring [6]. For the case of power series rings, Condo proved
that R is a Dedekind domain if and only if R[[X ]] ⊆ T [[X ]] is LCM-stable for
any domain T containing R as a subring [6, Theorem 11].
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In modern multiplicative ideal theory, star-operations are essential and im-
portant tools for characterizing and investigating several classes of integral
domains (Definitions related to star-operations will be reviewed in Section
1). Among these, the w-operation can be used to characterize GCD-domains,
Prüfer v-multiplication domains (PvMD) and Krull domains. So it is natural
and reasonable to study the w-operation version of LCM-stable extensions. Let
wR and wT be the w-operations on R and T , respectively. In this paper, for
an extension R ⊆ T of integral domains, we introduce the concepts of wR-
LCM-stableness and wT (e)-LCM-stableness and investigate some properties of
them.

In Section 1, we review some notations and basic facts on star-operations,
then we define the notions of ∗(e)- and ∗-LCM-stable extensions. Let ∗T be a
star-operation on T and ∗R be a star-operation on R with (∗R)wR

= ∗R. We
show that LCM-stable extensions are both ∗T (e)-LCM-stable and ∗R-LCM-
stable. In Section 2, we study w(e)-LCM-stable extensions: R ⊆ T is w(e)-
LCM-stable if ((aR ∩ bR)T )wT

= aT ∩ bT for all 0 6= a, b ∈ R. Among other
things, we show that R ⊆ T is w(e)-LCM-stable if and only if R ⊆ TM is LCM-
stable for all maximal t-idealsM of T . We also prove that ifR is a Krull domain,
then R ⊆ T is w(e)-LCM-stable if and only if R[X ] ⊆ T [X ] is w(e)-LCM-stable.
Moreover, if T is an overring of a Krull domain R, then R ⊆ T is w(e)-LCM-
stable if and only if T is t-linked over R. Finally in Section 3, we study w-LCM-
stable extensions: R ⊆ T is w-LCM-stable if ((aR∩bR)T )wR

= (aT ∩bT )wR
for

all 0 6= a, b ∈ R. We show that R ⊆ T is w-LCM-stable if and only if RP ⊆ TP

is LCM-stable for all maximal t-ideals P of R. In particular, if T is t-linked
over R, then w-LCM-stable extensions are w(e)-LCM-stable. We finally show
that if R is a PvMD, then R ⊆ T is w-LCM-stable if and only if R[X ] ⊆ T [X ]
is w-LCM-stable. As a corollary, we have that R is a PvMD if and only if
R[X ] ⊆ T [X ] is w-LCM-stable for each overring T of R.

1. Star-operations and LCM-stableness

Let R be an integral domain and qf(R) be the quotient field of R. Let F(R)
be the set of nonzero fractional ideals of R. A mapping ∗ : F(R) → F(R), I 7→
I∗, is called a star-operation on R if the following three conditions are satisfied
for all 0 6= a ∈ qf(R) and I, J ∈ F(R): (i) (aR)∗ = aR and (aI)∗ = aI∗, (ii)
I ⊆ I∗, and if I ⊆ J , then I∗ ⊆ J∗, and (iii) (I∗)∗ = I∗.

Let f(R) be the set of nonzero finitely generated fractional ideals of R; so
f(D) ⊆ F(D). Given a star-operation ∗ on R, we can construct two new star-
operations ∗f and ∗w on R as follows: I∗f

=
⋃

{J∗ | J ⊆ I and J ∈ f(R)}
and I∗w

= {x ∈ qf(R) | xJ ⊆ I for some J ∈ f(R) with J∗ = R} for all
I ∈ F(R). We say that ∗ is of finite character if ∗f = ∗. Clearly, (∗f )f = ∗f
and (∗w)f = ∗w = (∗f )w, and hence ∗f and ∗w are of finite character. We say
that I ∈ F(R) is a ∗-ideal if I∗ = I. A ∗-ideal of R is called a maximal ∗-ideal
if it is maximal among proper integral ∗-ideals of R. It is known that if R is
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not a field, then a maximal ∗f -ideal of R always exists. Let ∗-Max(R) be the
set of maximal ∗-ideals of R. It is known that ∗f -Max(R) = ∗w-Max(R) and
I∗w

=
⋂

P∈∗f -Max(R)

IRP for all I ∈ F(R) [2, Corollary 2.10], hence (I∗w
)RP =

IRP for all P ∈ ∗f -Max(R).
The most well-known examples of star-operations are the d-, v-, t-, and w-

operations. The d-operation is just the identity function on F(R), i.e., Id = I

for all I ∈ F(R). The v-operation is defined by Iv = (I−1)−1, where I−1 =
{x ∈ qf(R) | xI ⊆ R} for all I ∈ F(R). The t-operation (resp., w-operation)
is given by t = vf (resp., w = vw). It is clear that d = df = dw, tf = t and
w = wf = tw = ww. Let ∗1 and ∗2 be star-operations on R. We mean by
∗1 ≤ ∗2 that I∗1 ⊆ I∗2 for all I ∈ F(R). It is well-known that if ∗1 ≤ ∗2, then
(∗1)f ≤ (∗2)f and (∗1)w ≤ (∗2)w. Also, d ≤ ∗w ≤ ∗f ≤ ∗ ≤ v, ∗f ≤ t, and
∗w ≤ w for any star-operation ∗ on R. For details on more basic properties
of star operations, the reader may consult [11, Sections 32 and 34] (A more
appropriate reference, companion to [10], may be [24, Section 1]).

We first give the definition of ∗T (e)-LCM-stable extensions, which is a nat-
ural generalization of LCM-stable extensions.

Definition 1.1. Let R ⊆ T be an extension of integral domains, and let
∗T be a star-operation on T . We say that R ⊆ T is ∗T (e)-LCM-stable if
((aR ∩ bR)T )∗T

= (aT ∩ bT )∗T
for all 0 6= a, b ∈ R.

It is clear that αT ∩ βT is a v-ideal of T , and thus (αT ∩ βT )∗T
= αT ∩ βT

for any 0 6= α, β ∈ T . Hence R ⊆ T is ∗T (e)-LCM-stable if and only if
((aR ∩ bR)T )∗T

= aT ∩ bT for all 0 6= a, b ∈ R. Note that if dT is the d-
operation on T , then ((aR ∩ bR)T )dT

= (aR ∩ bR)T for all 0 6= a, b ∈ R; hence
the dT (e)-LCM-stable extension is just the LCM-stable extension. Note also
that if ∗ is a star-operation on T , then ∗ ≤ vT , where vT is the v-operation on
T ; so if R ⊆ T is ∗(e)-LCM-stable, then ((aR ∩ bR)T )∗ = ((aR ∩ bR)T )vT for
all 0 6= a, b ∈ R.

Lemma 1.2. Let ∗1 ≤ ∗2 be star-operations on T .

(1) If R ⊆ T is ∗1(e)-LCM-stable, then R ⊆ T is ∗2(e)-LCM-stable.

(2) If R ⊆ T is LCM-stable, then R ⊆ T is ∗1(e)-LCM-stable.

(3) If R ⊆ T is ∗1(e)-LCM-stable, then R ⊆ T is vT (e)-LCM-stable.

Proof. For (1), let 0 6= a, b ∈ R. Since R ⊆ T is ∗1(e)-LCM-stable, ((aR ∩
bR)T )∗1 = aT ∩ bT , and hence ((aR ∩ bR)T )∗2 = aT ∩ bT because ∗1 ≤ ∗2
and aT ∩ bT is a v-ideal. Thus R ⊆ T is ∗2(e)-LCM-stable. (2) and (3) follow
directly from (1) because LCM-stable extensions are dT (e)-LCM-stable and
dT ≤ ∗1 ≤ vT . �

Let X be an indeterminate over T and T [X ] be the polynomial ring over T .
For any f ∈ T [X ], we denote by cT (f) the fractional ideal of T generated by
the coefficients of f .
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Let ∗ be a star-operation of finite type on R, and let M be an R-module
with M ⊆ qf(R). Then since each finitely generated R-submodule of M is a
fractional ideal of R, we can define M∗ as follows: M∗ =

⋃

{N∗ | N ⊆ M and
N is a nonzero finitely generated R-module}. What happens if M * qf(R)? In
general, there is no way to define M∗, but we can define M∗ if ∗ = ∗w by setting
M∗ = {a

b
| a, b ∈ M, b 6= 0 and a

b
J ⊆ M for some J ∈ f(R) with J∗ = R}.

Lemma 1.3 (cf. [5, Lemma 2.3]). Let R ⊆ T be an extension of integral

domains. If ∗ is a star-operation on R and N∗ = {f ∈ R[X ] | cR(f)∗ = R},
then A∗w

= A[X ]N∗
∩ qf(T ), and hence A∗w

[X ]N∗
= A[X ]N∗

and (A∗w
)∗w

=
A∗w

for all nonzero fractional ideals A of T .

Proof. If u ∈ A∗w
, then there is a nonzero finitely generated ideal J of R

such that J∗ = R and uJ ⊆ A. So if we choose a polynomial f ∈ R[X ]

with cR(f) = J , then f ∈ N∗, and hence u = uf

f
∈ A[X ]N∗

∩ qf(T ). Thus

A∗w
⊆ A[X ]N∗

∩ qf(T ). For the reverse containment, let a = g

h
∈ A[X ]N∗

∩
qf(T ), where g ∈ A[X ] and h ∈ N∗. Then ah = g and cR(h)∗ = R, and
since acR(h) = cR(ah) ⊆ cT (ah) = cT (g) ⊆ A, we have a ∈ A∗w

. Thus
A[X ]N∗

∩ qf(T ) ⊆ A∗w
. �

We next give another generalization of LCM-stable extensions.

Definition 1.4. Let R ⊆ T be an extension of integral domains, and let ∗R be
a star-operation on R such that (∗R)w = ∗R. We say that R ⊆ T is ∗R-LCM-

stable if ((aR ∩ bR)T )∗R
= (aT ∩ bT )∗R

for all 0 6= a, b ∈ R.

Note that if dR is the d-operation on R, then (dR)w = dR and AdR
= A

for all nonzero fractional ideals A of T . Hence LCM-stable extensions are also
just the dR-LCM-stable extensions. Thus R ⊆ T is a dR-LCM-stable extension
if and only if R ⊆ T is an LCM-stable extension, if and only if R ⊆ T is a
dT (e)-LCM-stable extension.

Lemma 1.5. Let ∗1 ≤ ∗2 be star-operations on R such that (∗i)w = ∗i for

i = 1, 2.

(1) If R ⊆ T is ∗1-LCM-stable, then R ⊆ T is ∗2-LCM-stable.

(2) An LCM-stable extension is a ∗1-LCM-stable extension.

(3) Every ∗1-LCM-stable extension is a wR-LCM-stable extension.

Proof. (1) Let A be a nonzero fractional ideal of T . Let N∗i
= {f ∈ R[X ] |

cR(f)∗i
= R} for i = 1, 2. Since ∗1 ≤ ∗2, then N∗1 ⊆ N∗2 . Hence by Lemma

1.3, A∗1 = A[X ]N∗1
∩qf(T ) ⊆ A[X ]N∗2

∩qf(T ) = A∗2 ; so (A∗1)∗2 = A∗2 . Thus
R ⊆ T is ∗2-LCM-stable.

(2) This follows from (1) because an LCM-stable extension is just the dR-
LCM-stable extension and dR ≤ ∗1.

(3) This also follows from (1) because ∗1 ≤ wR. �
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It is well-known that the w-operation can be defined on any integral domain.
So we use the terms “w- and w(e)-LCM-stable” instead of “wR- and wT (e)-
LCM-stable”. Also, the w-operation has many properties similar to those of
the d-operation. For example, if I is a nonzero fractional ideal of R, then
(IwR

)RP = IRP for all maximal t-ideals P of R. So in this paper (Sections 2
and 3), we are mainly interested in w(e)- and w-LCM-stable extensions.

2. w(e)-LCM stable extensions

Let R ⊆ T be an extension of integral domains, and let vT and wT be the v-
and w-operations on T , respectively (when it is clear, we will use the notations
v and w instead of vT and wT ). Let X be an indeterminate over T and let
R[X ] and T [X ] be polynomial rings over R and T , respectively. In this section,
we study some properties of w(e)-LCM-stable extensions.

Recall that R ⊆ T is w(e)-LCM-stable if ((aR ∩ bR)T )wT
= aT ∩ bT for

all 0 6= a, b ∈ R. In Lemma 1.2, we noted that LCM-stable extensions are
w(e)-LCM-stable. We begin this section with an example of w(e)-LCM-stable
extensions that is not LCM-stable.

Example 2.1. We first recall that an integral domain R is a Krull domain if
(i) R =

⋂

P∈X(1)(R)

RP , where X
(1)(R) is the set of height-one prime ideals of R,

(ii) RP is a rank-one DVR for all P ∈ X(1)(R), and (iii) each nonzero nonunit
of R is contained in only a finite number of height-one prime ideals.

Let R be a Krull domain, Q ∈ X(1)(R) and T =
⋂

P∈X(1)(R)\{Q}

RP . Then T

is a Krull domain and X(1)(T ) = {PRP ∩ T | P ∈ X(1)(R) and P 6= Q}. Note
that if 0 6= a, b ∈ R, then

((aR ∩ bR)T )wT
=

⋂

P∈X(1)(R)\{Q}

((aR ∩ bR)T )RP

=
⋂

P∈X(1)(R)\{Q}

(aRP ∩ bRP )

=





⋂

P∈X(1)(R)\{Q}

aRP



 ∩





⋂

P∈X(1)(R)\{Q}

bRP





= aT ∩ bT.

Thus R ⊆ T is w(e)-LCM-stable.
Next, since R is a Krull domain, we can choose 0 6= x, y ∈ R such that Q =

(1, y

x
)−1 = 1

y
(xR∩yR). So if R ⊆ T is LCM-stable, then QT = 1

y
(xR∩yR)T =

1
y
(xT ∩ yT ). Note that (QT )vT = T ; hence QT = 1

y
(xT ∩ yT ) = (QT )vT = T .

Thus if QT 6= T , then R ⊆ T is not LCM-stable.
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Our next result is a characterization of w(e)-LCM-stable extensions, which
relates w(e)-LCM-stable extensions to LCM-stable extensions so that we can
predict the properties of w(e)-LCM-stable extensions.

Theorem 2.2. R ⊆ T is w(e)-LCM-stable if and only if R ⊆ TM is LCM-

stable for each maximal t-ideal M of T .

Proof. (⇒) For 0 6= a, b ∈ R, we have ((aR ∩ bR)T )wT
= aT ∩ bT . So if M is

a maximal t-ideal of T , then

(aR ∩ bR)TM = (((aR ∩ bR)T )wT
)M

= (aT ∩ bT )M

= aTM ∩ bTM .

Thus R ⊆ TM is LCM-stable.
(⇐) Let 0 6= a, b ∈ R. Then (aR ∩ bR)TM = aTM ∩ bTM for all maximal

t-ideals M of T , and hence we have

((aR ∩ bR)T )wT
=

⋂

M∈t-Max(T )

(aR ∩ bR)TM

=
⋂

M∈t-Max(T )

(aTM ∩ bTM )

=





⋂

M∈t-Max(T )

aTM



 ∩





⋂

M∈t-Max(T )

bTM





= aT ∩ bT.

Thus R ⊆ T is w(e)-LCM-stable. �

Corollary 2.3. If R ⊆ T is w(e)-LCM-stable, then R ⊆ TS is w(e)-LCM-

stable for each multiplicative subset S of T .

Proof. Let Q be a maximal t-ideal of TS . Then there is a prime t-ideal P of
T such that Q = PTS (cf. [15, Lemma 3.17]). So if M is a maximal t-ideal of
T containing P , then (TS)Q = (TS)PTS

= TP = (TM )PM
, and since R ⊆ TM

is LCM-stable by Theorem 2.2, R ⊆ TQ is also LCM-stable. Thus, again by
Theorem 2.2, R ⊆ TS is w(e)-LCM stable. �

Following [8], we say that T is t-linked over R if for I a nonzero finitely
generated ideal of R, I−1 = R implies (IT )−1 = T . Equivalently, if M is a
maximal t-ideal of T with M ∩ R 6= (0), then (M ∩ R)t ( R [3, Proposition
2.1].

Let T be an overring of R. As in [16], we say that T is t-flat over R if
TQ = RQ∩R for all maximal t-ideal Q of T . Clearly, if T is flat over R, then T

is t-flat over R. It is known that if R ⊆ T is flat, then R ⊆ T is LCM-stable
[20, Proposition 1.1]. Our next result is the t-flat analog of this result.

Corollary 2.4. Let T be an overring of R.
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(1) If T is t-flat over R, then R ⊆ T is w(e)-LCM-stable.

(2) If T is t-linked over R, then R ⊆ T is w(e)-LCM-stable if and only if

T is t-flat over R.

Proof. (1) Let Q be a maximal t-ideal of T . Then TQ = RQ∩R and hence
R ⊆ TQ is LCM-stable. Thus R ⊆ T is w(e)-LCM-stable by Theorem 2.2.

(2) Suppose that R ⊆ T is w(e)-LCM-stable. Then by [16, Proposition 2.5],
it suffices to show that ((y :R x)T )wT

= T for each 0 6= x, y ∈ R with x
y
∈ T .

Let x
y
∈ T , where x, y ∈ R and y 6= 0. Then since R ⊆ T is w(e)-LCM-stable,

we have ((y :R x)T )wT
= y :T x = T . The converse always holds by (1). �

Recall that R is a Prüfer v-multiplication domain (PvMD) if every nonzero
finitely generated ideal I of R is t-invertible, i.e., (II−1)t = R. We know that R
is a Prüfer domain if and only if R ⊆ T is LCM-stable for any integral domain
T containing R, if and only if R ⊆ R[u] is LCM-stable for each u ∈ qf(R) [20,
Corollary 1.8]. Now we give the PvMD analog of this fact.

Corollary 2.5. R is a PvMD if and only if R ⊆ T is w(e)-LCM-stable for

any t-linked overring T of R.

Proof. It is well-known that R is a PvMD if and only if every t-linked overring
of R is t-flat over R [16, Proposition 2.10]. Thus the result is an immediate
consequence of Corollary 2.4. �

By Lemma 1.2, LCM-stable extensions are w(e)-LCM-stable extensions.
We next give some integral domains in which w(e)-LCM-stable extensions are
LCM-stable.

Example 2.6. R ⊆ T is LCM-stable if (and only if) R ⊆ T is w(e)-LCM-stable
in any of the cases below.

(1) Each maximal ideal of T is a t-ideal.
(2) R is a GCD-domain.
(3) R is a UFD.
(4) T is a Prüfer domain.
(5) T is an integral domain of (Krull) dimension one.

Proof. (1) Recall that R ⊆ T is LCM-stable if and only if RP ⊆ TQ is LCM-
stable for each maximal ideal Q of T with Q ∩ R = P [20, Proposition 1.6],
which implies that RS1 ⊆ TS2 is LCM-stable for any multiplicative subsets S1

and S2 of R and T , respectively, with S1 ⊆ S2 [20, Corollary 1.5]. Thus the
result follows from Theorem 2.2.

(2) If 0 6= a, b ∈ R, then aR∩ bR = cR for some c ∈ R because R is a GCD-
domain. Since R ⊆ T is w(e)-LCM-stable, we have aT ∩ bT = ((aR∩ bR)T )wT

.
Thus we obtain

aT ∩ bT = ((aR ∩ bR)T )wT
= ((cR)T )wT

= (cR)T = (aR ∩ bR)T,

which indicates that R ⊆ T is LCM-stable.
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(3) This follows from (2) because UFDs are GCD-domains.
(4) and (5) These follow from (1) because each maximal ideal of a Prüfer

domain and an integral domain of Krull dimension one is a t-ideal. �

In [20], Uda introduced the notions of R2-stableness and G2-stableness. The
G2-stableness is just the t-linkedness [20, page 363]. As in [20], we say that
R ⊆ T is R2-stable if aR∩ bR = cR with a, b, c ∈ R implies aT ∩ bT = cT . It is
known that T is t-linked over R if and only if T [X ] is t-linked over R[X ], if and
only if R[X ] ⊆ T [X ] is R2-stable [20, Theorem 3.5]. Also, it was shown that if
R is a GCD-domain, then R ⊆ T is LCM-stable if and only if T is t-linked over
R, if and only if R ⊆ T is R2-stable, if and only if R[X ] ⊆ T [X ] is LCM-stable
[20, Corollary 3.7].

Proposition 2.7. Let R ⊆ T be an extension of integral domains.

(1) If R ⊆ T is w(e)-LCM-stable, then R ⊆ T is R2-stable.

(2) R ⊆ T is R2-stable if and only if (a, b)−1 = R for 0 6= a, b ∈ R implies

((a, b)T )−1 = T .

(3) If T is t-linked over R, then R ⊆ T is R2-stable.

Proof. (1) This implication is clear.
(2) (⇒) Let 0 6= a, b ∈ R be such that (a, b)−1 = R. Then aR ∩ bR = abR

because (a, b)−1 = 1
ab
(aR∩bR). Thus ((a, b)T )−1 = 1

ab
(aT ∩bT ) = 1

ab
abT = T .

(⇐) Assume aR ∩ bR = cR with 0 6= a, b, c ∈ R. Then (a, b)−1 = 1
ab
(aR ∩

bR) = c
ab
R, and hence ( c

b
, c
b
)−1 = R. Therefore, we have

T = ((
c

b
,
c

a
)T )−1 =

ab

c2
(
c

b
T ∩

c

a
T ) =

a

c
T ∩

b

c
T.

Thus aT ∩ bT = cT .
(3) This is an immediate consequence of (2) above. �

We say thatR is of finite t-character if each nonzero nonunit ofR is contained
in only a finite number of maximal t-ideals of R. For example, Krull domains
and Noetherian domains are of finite t-character. If R is of finite t-character,
then the converse of Proposition 2.7(3) holds.

Corollary 2.8. Suppose that R is of finite t-character.

(1) R ⊆ T is R2-stable if and only if T is t-linked over R.

(2) If R ⊆ T is w(e)-LCM-stable, then T is t-linked over R.

Proof. (1) By Proposition 2.7(2) and (3), it suffices to show that if I is a nonzero
finitely generated ideal of R with I−1 = R, then there are some a, b ∈ I such
that (a, b)−1 = R. Choose a nonzero a ∈ I. Since R is of finite t-character,
there are only finitely many maximal t-ideals of R containing a, say, P1, . . . , Pn.
Choose another b ∈ I \

⋃n

i=1 Pi. Then (a, b)−1 = R.
(2) This follows directly from (1) above and Proposition 2.7(1). �
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We know that if R is a GCD-domain, then R ⊆ T is LCM-stable if and only
if R[X ] ⊆ T [X ] is LCM-stable. Thus by Example 2.6, if R is a GCD-domain,
then R ⊆ T is w(e)-LCM-stable if and only if R[X ] ⊆ T [X ] is w(e)-LCM-
stable. It was shown in [21, Theorem 11] that if R is a Krull domain, then
R ⊆ T is LCM-stable if and only if R[X ] ⊆ T [X ] is LCM-stable. We next give
the w(e)-LCM-stable extension analog of this result in Theorem 2.11. Before
proving the theorem, we need a couple of lemmas.

Lemma 2.9 (cf. [21, Lemma 9]). Let R be a Krull domain. Assume that

R ⊆ T is w(e)-LCM-stable. If I is a v-ideal of R, then (IT )w is a v-ideal of T .

Proof. Since I is a v-ideal of R, there are nonzero a, b ∈ qf(R) such that
I = aR ∩ bR [11, Corollary 44.6]. Since R ⊆ T is w(e)-LCM-stable, we have

(IT )w = ((aR ∩ bR)T )w = aT ∩ bT.

Thus (IT )w is a v-ideal. �

Lemma 2.10. If R ⊆ T is w(e)-LCM-stable, then R ⊆ T [X ] is w(e)-LCM-

stable.

Proof. Let 0 6= a, b ∈ R. Then ((aR ∩ bR)T )wT
= aT ∩ bT , and hence

((aR ∩ bR)T [X ])wT [X]
= ((aR ∩ bR)T )wT

T [X ]

= (aT ∩ bT )T [X ]

= aT [X ] ∩ bT [X ],

where the first equality follows from [12, Proposition 4.3]. Thus R ⊆ T [X ] is
w(e)-LCM-stable. �

Let Nv(R) = {f ∈ R[X ] | cR(f)v = R}. Then Nv(R) is a multiplicative
subset of R[X ], and the quotient ring R[X ]Nv(R) is called the t-Nagata ring of
R (To the best of our knowledge, this notion was first considered implicitly by
Gilmer in [9] and then systemically by Kang in [14, 15]).

Theorem 2.11. The following statements are equivalent for a Krull domain

R.

(1) R ⊆ T is w(e)-LCM-stable.

(2) ((a :R b)T )wT
= a :T b for all 0 6= a, b ∈ R.

(3) R[X ] ⊆ T [X ] is w(e)-LCM-stable.

(4) R[X ] ⊆ T [X ]Nv(T ) is LCM-stable.

(5) Nv(R) ⊆ Nv(T ) and R[X ]Nv(R) ⊆ T [X ]Nv(T ) are LCM-stable.

Proof. (1) ⇔ (2) This follows easily from the fact that (a)∩ (b) = ((a) : (b))(b).
(1) ⇒ (3) Assume that R ⊆ T is w(e)-LCM-stable. Then R ⊆ T is R2-

stable, and since R is a Krull domain, T is t-linked over R by Corollary 2.8,
and hence T [X ] is t-linked over R[X ] [20, Theorem 3.5]. Thus for any 0 6=
f, g ∈ R[X ], we have f :T [X] g = ((f :R[X] g)T [X ])v [21, Proposition 8]. Note
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that f :R[X] g = (R :qf(R) I)fR[X ], where I = cR(f) + cR(g), [20, Lemma 3.9]
and ((R :qf(R) I)T [X ])w = ((R :qf(R) I)T [X ])v by Lemmas 2.9 and 2.10. Thus

((f :R[X] g)T [X ])w = ((f :R[X] g)T [X ])v = f :T [X] g,

which implies that R[X ] ⊆ T [X ] is w(e)-LCM-stable.
(3) ⇒ (4) This follows from Corollary 2.3 and Example 2.6 because each

maximal ideal of T [X ]Nv(T ) is extended from a maximal t-ideal of T [X ] [15,
Propositions 2.1 and 2.2].

(4) ⇒ (1) Let 0 6= a, b ∈ R. Since R[X ] ⊆ T [X ]Nv(T ) is LCM-stable, we
have

(aR[X ] ∩ bR[X ])T [X ]Nv(T ) = aT [X ]Nv(T ) ∩ bT [X ]Nv(T )

= (aT ∩ bT )T [X ]Nv(T ),

and thus by Lemma 1.3, we obtain

((aR ∩ bR)T )wT
= (aR[X ] ∩ bR[X ])T [X ]Nv(T ) ∩ qf(T )

= (aT ∩ bT )T [X ]Nv(T ) ∩ qf(T )

= (aT ∩ bT )wT

= aT ∩ bT.

(4) ⇒ (5) Note that R is of finite t-character. Also, R ⊆ T is w(e)-LCM-
stable by (4) ⇒ (1) above. So T is t-linked over R by Corollary 2.8 and hence
Nv(R) ⊆ Nv(T ). Thus R[X ]Nv(R) ⊆ T [X ]Nv(T ) is LCM-stable [20, Corollary
1.5].

(5) ⇒ (1) This can be proved in the same way as the proof of (4) ⇒ (1). �

Corollary 2.12. Let T be an overring of R. If R is a Krull domain, then

R ⊆ T is w(e)-LCM-stable if and only if T is t-linked over R.

Proof. Assume that T is t-linked over R. Then T =
⋂

P∈Λ

RP , where Λ is a set

of height-one prime ideals of R [15, Theorem 3.8]. Hence for all 0 6= a, b ∈ R,
we have

((aR ∩ bR)T )wT
=

⋂

P∈Λ

((aR ∩ bR)T )RP

=
⋂

P∈Λ

(aRP ∩ bRP )

=

(

⋂

P∈Λ

aRP

)

∩

(

⋂

P∈Λ

bRP

)

=

(

⋂

P∈Λ

(aT )RP

)

∩

(

⋂

P∈Λ

(bT )RP

)

= (aT )wT
∩ (bT )wT

= aT ∩ bT.
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Thus R ⊆ T is w(e)-LCM-stable. The converse follows from Theorem 2.11. �

3. w-LCM stableness

Let R ⊆ T be an extension of integral domains, X be an indeterminate over
T , and T [X ] be the polynomial ring over T . Let R[X ] be the polynomial ring
and Nv(R) = {f ∈ R[X ] | cR(f)v = R}.

Recall that R ⊆ T is w-LCM-stable if ((aR∩ bR)T )wR
= (aT ∩ bT )wR

for all
0 6= a, b ∈ R. By Lemma 1.5, LCM-stable extensions are w-LCM-stable, but
w-LCM-stable extensions need not be LCM-stable (see Example 3.9).

Lemma 3.1. If M is a torsionfree R-module, then MwR
=

⋂

P∈t-Max(R)

MP .

Hence (MwR
)P = MP for all nonzero prime ideals P of R with Pt ( R.

Proof. This appears in [22, Proposition 3.4] and [23, Theorem 3.9]. �

Our first result of this section is a characterization of w-LCM-stable exten-
sions via LCM-stable extensions.

Theorem 3.2. The following statements are equivalent.

(1) R ⊆ T is w-LCM-stable.

(2) If D = T [X ]Nv(R) ∩ qf(T ), then R ⊆ D is w-LCM-stable.

(3) RP ⊆ TP is LCM-stable for all nonzero prime ideals P of R with

Pt ( R.

(4) RP ⊆ TP is LCM-stable for all maximal t-ideals P of R.

Proof. (1) ⇒ (2) Clearly, R ⊆ D. Let 0 6= a, b ∈ R. Then ((aR ∩ bR)T )wR
=

(aT ∩ bT )wR
, and hence by Lemma 1.3, we have

((aR ∩ bR)D)wR
= (aR ∩ bR)D[X ]Nv(R) ∩ qf(T )

= (aR ∩ bR)T [X ]Nv(R) ∩ qf(T )

= ((aR ∩ bR)T )wR
[X ]Nv(R) ∩ qf(T )

= (aT ∩ bT )wR
[X ]Nv(R) ∩ qf(T )

= (aT ∩ bT )[X ]Nv(R) ∩ qf(T )

= (aT [X ]Nv(R) ∩ bT [X ]Nv(R)) ∩ qf(T )

= (aD[X ]Nv(R) ∩ bD[X ]Nv(R)) ∩ qf(T )

= (aD ∩ bD)[X ]Nv(R) ∩ qf(T )

= (aD ∩ bD)wR
.

(2) ⇒ (3) Let P be a nonzero prime ideals P of R with Pt ( R. For 0 6=
x, y ∈ RP , there is an s ∈ R \P such that sx, sy ∈ R. So ((sxR∩ syR)D)wR

=
(sxD ∩ syD)wR

by assumption. Thus by (2) and Lemma 3.1, we have

(xRP ∩ yRP )TP = (xRP ∩ yRP )DP

= (sxR ∩ syR)DP

= (((sxR ∩ syR)D)wR
)DP



404 G. W. CHANG, H. KIM, AND J. W. LIM

= ((xD ∩ yD)wR
)DP

= (xD ∩ yD)DP

= xDP ∩ yDP

= xTP ∩ yTP .

(3) ⇒ (4) Clear.
(4) ⇒ (1) Let 0 6= a, b ∈ R. For each P ∈ t-Max(R), since RP ⊆ TP is

LCM-stable, (aR ∩ bR)TP = (aRP ∩ bRP )TP = aTP ∩ bTP = (aT ∩ bT )P .
Hence

((aR ∩ bR)T )wR
=

⋂

P∈t-Max(R)

(aR ∩ bR)TP

=
⋂

P∈t-Max(R)

(aT ∩ bT )P

= (aT ∩ bT )wR

by Lemma 3.1. �

Remark 3.3. Let R ⊆ T be an extension of integral domains.
(1) It is easy to show that TwR

= T [X ]Nv(R) ∩ qf(T ) is t-linked over R and
that if D is an overring of T such that D is t-linked over R, then TwR

⊆ D (cf.
[5, Remark 3.3]).

(2) By Theorem 2.2, when we study w-LCM-stable extensions, it suffices to
consider the case when T is t-linked over R.

Corollary 3.4. If R ⊆ T is w-LCM-stable, then RS1 ⊆ TS2 is w-LCM-stable

for any multiplicative subsets S1 and S2 of R and T , respectively, with S1 ⊆ S2.

Proof. Let Q be a maximal t-ideal of RS1 . Then Q = PRS1 for some prime
t-ideal P of R (cf. [15, Lemma 3.17]) and hence (RS1)Q = RP and (TS2)Q =
(TS2)R\P = (TR\P )S2 . By Theorem 3.2, RP ⊆ TR\P is LCM-stable, and thus
(RS1)Q = RP ⊆ (TR\P )S2 = (TS2)Q is LCM-stable [20, Corollary 1.5]. Thus
again by Theorem 3.2, RS1 ⊆ RS2 is w-LCM-stable. �

We note in Example 2.6(1) that if each maximal ideal of T is a t-ideal, then
the extension R ⊆ T being w(e)-LCM-stable implies that R ⊆ T is LCM-stable.
The next result is the w-LCM-stable extension analog.

Corollary 3.5. If each maximal ideal of R is a t-ideal, then R ⊆ T is w-LCM-

stable if and only if R ⊆ T is LCM-stable.

Proof. Assume that R ⊆ T is w-LCM-stable. Let M be a maximal ideal of
T . If M ∩ R = (0), then RM∩R is a field, and hence RM∩R ⊆ TM is LCM-
stable. Next, if M ∩ R 6= (0), then (M ∩ R)t ( R by assumption and hence
RM∩R ⊆ TM is LCM-stable by Theorem 3.2 and [20, Corollary 1.5]. Thus
R ⊆ T is LCM-stable [20, Proposition 1.6]. The converse follows from Lemma
1.5. �
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Let M be an R-module. We say that M is a w-locally flat R-module if MP

is a flat RP -module for all maximal t-ideals P of R. Although the notions
of w-locally flat and t-flat are generalizations of flatness, they are different as
shown in [4]. We next give the w-locally flat analog of Corollary 2.4(1).

Corollary 3.6. If R ⊆ T is w-locally flat, then R ⊆ T is w-LCM-stable.

Proof. This follows from Theorem 3.2 and [20, Proposition 1.1]. �

It is clear that (a) ∩ (b) = ((a) :R (b))(b) for all 0 6= a, b ∈ R. Thus R ⊆ T

is w-LCM-stable if and only if ((a :R b)T )wR
= (a :T b)wR

for all 0 6= a, b ∈ R.
In particular, if T is t-linked over R, then R ⊆ T is w-LCM-stable if and only
if ((a :R b)T )wR

= a :T b for all 0 6= a, b ∈ R (see Proposition 3.7(2)).

Proposition 3.7. Assume that T is t-linked over R.

(1) (aT ∩ bT )wR
= aT ∩ bT for all 0 6= a, b ∈ R.

(2) R ⊆ T is w-LCM-stable if and only if ((aR ∩ bR)T )wR
= aT ∩ bT for

all 0 6= a, b ∈ R.

(3) If R ⊆ T is w-LCM-stable, then R ⊆ T is w(e)-LCM-stable.

Proof. (1) Note that Nv(R) ⊆ Nv(T ) because T is t-linked over R. Hence if I
is a nonzero fractional ideal of T , then

IwR
= IT [X ]Nv(R) ∩ qf(T ) ⊆ IT [X ]Nv(T ) ∩ qf(T ) = IwT

by Lemma 1.3. So IwR
⊆ (IwR

)wT
= IwT

. Hence we have

(aT ∩ bT )wR
⊆ (aT ∩ bT )wT

= aT ∩ bT ⊆ (aT ∩ bT )wR
.

Thus (aT ∩ bT )wR
= aT ∩ bT .

(2) If R ⊆ T is w-LCM-stable, then ((aR ∩ bR)T )wR
= (aT ∩ bT )wR

. Thus
((aR ∩ bR)T )wR

= aT ∩ bT by (1). Conversely, if ((aR ∩ bR)T )wR
= aT ∩ bT

for all 0 6= a, b ∈ R, then we have

((aR ∩ bR)T )wR
= (((aR ∩ bR)T )wR

)wR
= (aT ∩ bT )wR

by Lemma 1.3. Thus R ⊆ T is w-LCM-stable.
(3) This follows from (2) and the fact that (IwR

)wT
= IwT

for all nonzero
fractional ideals I of T (see the proof of (1) above). �

Corollary 3.8. The following statements are equivalent.

(1) R is a PvMD.

(2) R ⊆ T is w(e)-LCM-stable for any t-linked overring T of R.

(3) R ⊆ T is w-LCM-stable for any t-linked overring T of R.

(4) R ⊆ T is w-LCM-stable for any overring T of R.

Proof. (1) ⇔ (2) Corollary 2.5.
(3) ⇔ (4) Theorem 3.2.
(3) ⇒ (2) Proposition 3.7.
(1) ⇒ (4) Let P be a maximal t-ideal of R. Then RP is a valuation domain

and TR\P is an overring of RP . Hence TR\P is a quotient ring of RP [11,
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Theorem 17.6], and thus TR\P is flat over RP . Thus R ⊆ T is w-LCM-stable
by Theorem 3.2. �

We next give an example of w-LCM-stable extensions that are neither w(e)-
LCM-stable nor LCM-stable.

Example 3.9. Let R be a GCD-domain that is not a Prüfer domain (for
example, let R be the polynomial ring over Z). Then there exists an α ∈ qf(R)
such that R ⊆ R[α] is not LCM-stable [20, Corollary 1.8]. Moreover, since R is
a GCD-domain, R ⊆ R[α] is not w(e)-LCM-stable by Example 2.6. But note
that R ⊆ R[α] is w-LCM-stable by Corollary 3.8 because GCD-domains are
PvMDs.

It is known that if R is a GCD-domain, then R ⊆ T is LCM-stable if and only
if R[X ] ⊆ T [X ] is LCM-stable. Clearly, if R is a field, then R is a GCD-domain
and R ⊆ T is LCM-stable. Thus we have:

Lemma 3.10. If R is a field, then R[X ] ⊆ T [X ] is LCM-stable.

We next give a w-LCM-stable extension analog of Theorem 2.11 and [21,
Theorem 11] that if R is a Krull domain, then R ⊆ T is LCM-stable (resp.,
w(e)-LCM-stable) if and only if R[X ] ⊆ T [X ] is also LCM-stable (resp., w(e)-
LCM-stable).

Theorem 3.11. The following statements are equivalent for a PvMD R.

(1) R ⊆ T is w-LCM-stable.

(2) R[X ] ⊆ T [X ] is w-LCM-stable.

(3) R[X ]Nv(R) ⊆ T [X ]Nv(R) is LCM-stable.

Proof. (1) ⇒ (2) Let Q be a maximal t-ideal of R[X ], and let P = Q ∩R. By
Theorem 3.2, it suffices to show that R[X ]Q ⊆ T [X ]R[X]\Q is LCM-stable.

Case 1. P = (0). Then K = RR\{0} ⊆ TR\{0}, where K = qf(R). Since
K is a field, K[X ] ⊆ TR\{0}[X ] is LCM-stable by Lemma 3.10. Thus R[X ]Q =
K[X ]QK[X] ⊆ TR\{0}[X ]R[X]\Q = T [X ]R[X]\Q is LCM-stable [20, Corollary
1.5].

Case 2. P 6= (0). Then Q = P [X ], where P is a maximal t-ideal of R [13,
Proposition 1.1] and R[X ]P [X] = RP [X ]PRP [X]. Note that RP ⊆ TR\P is LCM-
stable by Theorem 3.2 and RP is a valuation domain; so RP [X ] ⊆ TR\P [X ] is
LCM-stable [20, Corollary 3.7]. Note also that

R[X ]P [X] = RP [X ]PRP [X] and T [X ]R[X]\P [X] = TR\P [X ]RP [X]\PRP [X].

Thus R[X ]P [X] ⊆ T [X ]R[X]\P [X] is LCM-stable.
(2) ⇒ (3) We first note that R[X ]Nv(R) ⊆ T [X ]Nv(R) is w-LCM-stable by

Corollary 3.4. Note also that each maximal ideal of R[X ]Nv(R) is a t-ideal [15,
Propositions 2.1 and 2.2]. Thus the result follows from Corollary 3.5.

(3) ⇒ (1) Let 0 6= a, b ∈ R and Nv = Nv(R). Then we have

((aR ∩ bR)T )wR
= ((aR ∩ bR)T )T [X ]Nv

∩ qf(T )
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= ((aR ∩ bR)R[X ]Nv
)T [X ]Nv

∩ qf(T )

= (aR[X ]Nv
∩ bR[X ]Nv

)T [X ]Nv
∩ qf(T )

= (aT [X ]Nv
∩ bT [X ]Nv

) ∩ qf(T )

= (aT ∩ bT )T [X ]Nv
∩ qf(T )

= (aT ∩ bT )wR
,

where the first and the sixth equalities follow from Lemma 1.3. Thus R ⊆ T is
w-LCM-stable. �

It is well-known that R is a Prüfer domain if and only if R is a PvMD whose
maximal ideals are t-ideals. So by Corollary 3.5 and Theorem 3.11, we have:

Corollary 3.12. The following assertions are equivalent for a Prüfer domain

R.

(1) R ⊆ T is LCM-stable.

(2) R[X ] ⊆ T [X ] is w-LCM-stable.

(3) R[X ]N ⊆ T [X ]N is LCM-stable, where N = {f ∈ R[X ] | cR(f) = R}.

The proofs (2) ⇒ (3) ⇒ (1) in Theorem 3.11 also show the following result.

Corollary 3.13. If R[X ] ⊆ T [X ] is w-LCM-stable, then R ⊆ T is w-LCM-

stable.

We give a new characterization of PvMDs. This is a w-LCM-stable extension
analog of the fact that R is a Prüfer domain if and only if R[X ] ⊆ T [X ] is LCM-
stable for each domain T containing R as a subring [6].

Corollary 3.14. R is a PvMD if and only if R[X ] ⊆ T [X ] is w-LCM-stable

for each overring T of R.

Proof. (⇒) This follows from Corollary 3.8 and Theorem 3.11.
(⇐) This follows from Corollaries 3.13 and 3.8. �

As mentioned in the Introduction, it was shown by Condo that R is a
Dedekind domain if and only if R[[X ]] ⊆ T [[X ]] is LCM-stable for any domain
T containing R as a subring. Thus the following question arises naturally.

Question 3.15. Is it true that R is a Krull domain if and only if R[[X ]] ⊆ T [[X ]]
is w-LCM-stable (or w(e)-LCM-stable) for any domain T containing R as a
subring such that R ⊆ T is t-linked?

Appendix

In this appendix, we give a diagram in order to help the readers better
understand the correlation among some properties including well-known facts
related to w-LCM-stableness and w(e)-LCM-stableness.

Recall that D is a DW-domain (or t-linkative) if each nonzero ideal of D is
a w-ideal. It was shown that D is a DW-domain if and only if each maximal
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LCM-stable
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(a)

(a)

(b)
(b)

(b)

(c)

(d)

t

(d)

Figure 1. Correlations among some properties related to w-
LCM-stableness and w(e)-LCM-stableness

ideal of D is a w-ideal, if and only if each prime ideal of D is a w-ideal [17,
Proposition 2.2].

Remark 3.16. Let R ⊆ T be an extension of integral domains in Figure 1. Then
we have the following assertions.

(1) The arrows without indices always hold.
(2) If R is a DW-domain, then the implications with the index (a) hold.
(3) If T is t-linked over R, then the implications with the index (b) hold.
(4) The implication with the index (c) holds in each of the following cases:

(i) Each maximal ideal of T is a t-ideal.
(ii) R is a GCD-domain.
(iii) R is a UFD.
(iv) T is a Prüfer domain.
(v) T is an integral domain of (Krull) dimension one.

(5) If R is of finite t-character, then the implication with the index (d)
holds.
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