# A FINITE ADDITIVE SET OF IDEMPOTENTS IN RINGS 

Juncheol Han and Sangwon Park*


#### Abstract

Abstract. Let $R$ be a ring with identity $1, I(R) \neq\{0\}$ be the set of all nonunit idempotents in $R$, and $M(R)$ be the set of all primitive idempotents and 0 of $R$. We say that $I(R)$ is additive if for all $e, f \in I(R)(e \neq f), e+f \in I(R)$. In this paper, the following are shown: (1) $I(R)$ is a finite additive set if and only if $M(R) \backslash\{0\}$ is a complete set of primitive central idempotents, $\operatorname{char}(R)=2$ and every nonzero idempotent of $R$ can be expressed as a sum of orthogonal primitive idempotents of $R$; (2) for a regular ring $R$ such that $I(R)$ is a finite additive set, if the multiplicative group of all units of $R$ is abelian (resp. cyclic), then $R$ is a commutative ring (resp. $R$ is a finite direct product of finite fields).


## 1. Introduction and basic definitions

Throughout this paper, let $R$ be an associative ring with identity 1. The Jacobson radical of $R$ is denoted by $J(R)$. We use $I(R)$ for the set of all nonunit idempotents of $R$, while we let $M(R)$ be the set of all primitive idempotents and 0 of $R$. We use $Z(R)$ and $\operatorname{char}(R)$ to denote the center of $R$ and the characteristic of $R$, respectively. A nonempty subset of a ring $R$ is called multiplicative if it is closed under

[^0]multiplication. Recall that two idempotents $e, f \in R$ are said to be orthogonal if ef $=f e=0$. Also recall that a nonzero idempotent $e \in R$ is said to be primitive if it can not be written as a sum of two nonzero orthogonal idempotents, or equivalently, $e R$ (resp. Re) is indecomposable as a right (resp. left) $R$-module. Recall that $R$ is said to have a complete set of primitive idempotents if there exists a finite set of mutually orthogonal primitive idempotents whose sum is 1 .

In [1], Dolz̆an has shown that a finite ring $R$ with $M(R)$ multiplicative is a product of local rings. In [2], Grover et al. have extended Dolz̆an's result as follows: if $R$ is a ring with a complete set of primitive idempotents, then $M(R)$ is multiplicative if and only if $R$ is a finite direct product of connected rings. On the other hand, in [5], it was shown that in case that $R$ is a direct product of countably many (not finite) connected rings $M(R)$ could not be multiplicative.

We say that $I(R)$ is additive if for all $e, f \in I(R)(e \neq f), e+f \in I(R)$ (equivalently, ef $=-f e$ ). For example, if $R$ is a Boolean ring, then $I(R)$ is additive. Also $M(R)$ is said to be additive in $I(R)$ if for all $e, f \in M(R)(e \neq f), e+f \in I(R)$. For example, if $R$ is a Boolean ring or a direct product of local rings, then $M(R)$ is additive in $I(R)$. Note that if $I(R)$ is additive, then $M(R)$ is additive in $I(R)$, but the converse is not true by considering a finite direct product of infinite fields. We also note that $I(R)$ is commuting if and only if $I(R)$ is multiplicative if and only if $I(R) \subseteq Z(R)$. By [5, Lemma 1] if $I(R)$ is additive, then $I(R) \subseteq Z(R)$. But the converse may not be true (e.g., $\mathbb{Z}_{3} \oplus \mathbb{Z}_{3} \oplus \mathbb{Z}_{3}$ ). In [5], it was shown that $I(R)$ is additive if and only if $I(R)$ is commuting and $\operatorname{char}(R)=2 ; M(R)$ is additive in $I(R)$ if and only if $M(R)$ is the set of primitive pairwise orthogonal idempotents.

We call a nonzero idempotent $e$ in a ring $R$ fully basic if $e$ can be expressed as a sum of mutually orthogonal primitive idempotents in $R$, and we call a ring $R$ a fully basic ring if all idempotents are fully basic. For example, a finite direct product of local rings and $T_{2}\left(\mathbb{Z}_{2}\right)$, the ring of all upper triangular $2 \times 2$ matrices over $\mathbb{Z}_{2}$, are fully basic rings. Note that in a fully basic ring $R$ (e.g., $\left.T_{2}\left(\mathbb{Z}_{2}\right)\right), I(R)$ may not be multiplicative.

In this paper, we will investigate a ring $R$ such that $I(R) \neq\{0\}$ is a finite additive set. In Section 2, we will show that if $I(R)$ is a finite additive set of a ring $R$, then there exists at least one primitive idempotent, and we will also show that $I(R)$ is a finite additive set of a ring $R$ if and only if $M(R) \backslash\{0\}$ is a complete set of minimal central
idempotents, the characteristic of $R$ (denoted by $\operatorname{char}(R))$ is 2 and $R$ is fully basic.

Recall that a ring $R$ is von-Neumann regular (simply regular) (resp. unit-regular) provided that for any $a \in R$ there exists an element $r \in R$ (resp. a unit $u \in R$ ) such that $a=$ ara (resp. $a=a u a$ ). A ring $R$ is strongly regular provided that for any $a \in R$ there exists some element $r \in R$ such that $a=r a^{2}$. Also a ring $R$ is abelian provided all idempotents in $R$ are central. In section 3, we will show that for a regular ring $R$ such that $I(R)$ is a finite additive set, if $G$, the group of all units of $R$, is an abelian (resp. a cyclic) group, then $R$ is a commutative ring (resp. $R$ is a finite direct product of finite fields).

## 2. Some properties of a ring with a finite additive set of idempotents

Throughout this section, we assume that $I(R) \neq\{0\}$ for any ring $R$. Let $\preceq$ denote the usual relation on $I(R)$, that is, $e \preceq f$ (or $f \succeq e$ ) means that $e f=f e=e$ (refer [1]). In particular, $e \prec f$ (or $f \succ e$ ) means that $e \preceq f$ and $e \neq f$. A nonzero idempotent $e$ is called minimal if there is no idempotent strictly between 0 and $e$ according to the partial ordering $\preceq$. Note that the minimal idempotents in this sense are precisely the primitive idempotents of $R$.

Lemma 2.1. Let $R$ be a ring. Then we have the following:
(1) [5, Theorem 2.5] $I(R)$ is additive if and only if $I(R)$ is commuting and $\operatorname{char}(R)=2$.
(2) [5, Corollary 2.6] $M(R)$ is additive in $I(R)$ if and only if $M(R)$ is the set of mutually primitive orthogonal idempotents.

Lemma 2.2. Let $R$ be a ring such that $I(R)$ is an additive set and let $0 \neq e \in I(R)$. If $c e=0$ for all $c \in I(R)(c \neq e)$, then $e$ is primitive.

Proof. Assume that $e$ is not primitive. Then $e=a+b$ for some nonzero orthogonal idempotents $a, b$ of $R$. Since $e$ is not primitive, $a, b \neq e$. By assumption, $0=a e=a+a b$, and $0=b e=b a+b$ and so $a=b=0$ since $a, b$ are orthogonal, a contradiction. Hence $e$ is primitive.

Lemma 2.3. Let $R$ be a ring. If $I(R)$ is a finite additive set in $R$, then $M(R) \neq\{0\}$.

Proof. Note that if $I(R)$ is orthogonal (i.e., $a b=b a=0$ for all $a, b \in$ $I(R)$ ), then each nonzero $e \in I(R)$ is primitive. Indeed, assume that $e \in I(R)$ is not primitive. Then $e=a+b$ for some nonzero orthogonal idempotents $a, b$ of $R$. Clearly, $a \neq b$. If $a \neq e$ (resp. $b \neq e$ ), then $0=e a=a($ resp. $0=e b=b)$, a contradiction. Hence each $e \in I(R)$ is primitive. Suppose that $I(R)$ is not orthogonal. Then there exist $e, f \in I(R)(e \neq f)$ such that ef$\neq 0$. Thus $e \succeq e f$. If ef is primitive, we are done. If $e f$ is not primitive, there exists a nonzero $e_{1} \in I(R)$ such that $e_{1}(e f) \neq 0$ by Lemma 2.2. Thus ef $\succ e_{1}(e f)$. Continuing this procedure then, starting now with $e_{1}$, we arrive at a strictly descending relation

$$
e f \succ e_{1}(e f) \succ e_{2} e_{1}(e f) \succ \cdots .
$$

Since $I(R)$ is finite, this relation terminates with some nonzero $e_{t} \cdots e_{1}(e f) \in I(R)$, and $e_{t} \cdots e_{1}(e f)$ must then be primitive. Hence $M(R) \neq\{0\}$.

Theorem 2.4. Let $R$ be a ring such that $I(R)$ is a finite additive set. Then we have the following:
(1) $R$ is fully basic.
(2) If $e=e_{1}+\cdots+e_{s}=f_{1}+\cdots+f_{t}$ for any nonzero $e \in I(R)$ where all $e_{i}$ 's (resp. $f_{j}$ 's) are mutually orthogonal primitive idempotents of $R$, then $s=t$ and $f_{j}$ can be renumbered so that $e_{i}=f_{i}$.
Proof. (1) Let $0 \neq e \in I(R)$ be arbitrary. We have $M(R) \neq\{0\}$ by Lemma 2.3. If $e$ is primitive, then we are done. Suppose that $e$ is not primitive. Then by the proof given in Lemma 2.3, there exists a nonzero $f_{1} \in I(R)$ such that $f_{1} e\left(=e f_{1}\right)$ is primitive, and so $e=e f_{1}+\left(e-e f_{1}\right)$, which is a sum of orthogonal idempotents of $R$. Note that $e \succ\left(e-e f_{1}\right)$. If $e-e f_{1}$ is primitive, then we are done. Suppose that $e-e f_{1}$ is not primitive. By the similar argument, there exists a nonzero $f_{2} \in I(R)$ such that $\left(e-e f_{1}\right) f_{2}$ is primitive. Thus $e-e f_{1}=\left(e-e f_{1}\right) f_{2}+((e-$ $\left.\left.\left.e f_{1}\right)-\left(e-e f_{1}\right) f_{2}\right)\right)$, which is also a sum of orthogonal idempotents of $R$. Also note that $\left.e-e f_{1} \succ\left(\left(e-e f_{1}\right)-\left(e-e f_{1}\right) f_{2}\right)\right)$. Continuing in this procedure, we get a strictly descending sequence of relations

$$
a_{0} \succ a_{1} \succ a_{2} \succ \cdots
$$

where $a_{0}=e, a_{n+1}=a_{n}-a_{n} f_{n+1}$ with $a_{n} f_{n+1} \in M(R)$ for some nonzero idempotent $f_{n+1}$ of $R$ and $a_{n} \neq 0$ for all $n=1,2, \ldots$. Next, we will show that all $f_{n}$ are distinct. To show this, we will proceed it by induction on $n$. If $n=2$, then clearly, $f_{1} \neq f_{2}$. Assume that this holds for $n$,
i.e., $f_{i} \neq f_{j}$ for all distinct $i, j(1 \leq i, j \leq n)$. For $n+1$, it is enough to show that $f_{n+1} \neq f_{i}$ for all $i=1, \ldots, n$. Assume that $f_{n+1}=f_{i}$ for some $i(1 \leq i \leq n)$. Then $a_{n} f_{n+1}=\left(a_{n-1}-a_{n-1} f_{n}\right) f_{n+1}=\left(a_{n-1}-\right.$ $\left.a_{n-1} f_{n}\right) f_{i}=a_{n-1} f_{i}=\left(a_{n-2}-a_{n-2} f_{n-1}\right) f_{i}=a_{n-2} f_{i}=\cdots=a_{i} f_{i}=0$, which is a contradiction to $a_{n} f_{n+1} \in M(R)$. Hence $f_{n+1} \neq f_{i}$ for all $i=1, \ldots, n$. Since $I(R)$ is finite and all $f_{n}$ are distinct, the above sequence must terminate, and so $a_{n}$ is a primitive idempotent of $R$. Hence $e=a_{0} f_{1}+a_{1} f_{2}+\cdots+a_{n-1} f_{n}+a_{n}$, which is a sum of orthogonal primitive idempotents in $R$.
(2) We can let $s \leq t$ without loss of generality. Since $e=e_{1}+\cdots+$ $e_{s}=f_{1}+\cdots+f_{t}$ where all $e_{i}$ 's (resp. $f_{j}$ 's) are mutually orthogonal primitive idempotents of $R, e_{1}=e_{1} e=e_{1} f_{1}+\cdots+e_{1} f_{t}$. Since $e_{1}$ is a primitive idempotent of $R, e_{1}=e_{1} f_{1}$ and $e_{1} f_{2}=\cdots=e_{1} f_{t}=0$ by renumbering $f_{j}$. Also, we have $f_{1}=e f_{1}=e_{1} f_{1}+\cdots+e_{s} f_{t}$. Since $f_{1}$ is a primitive idempotent of $R$ and $e_{1} f_{1} \neq 0, f_{1}=e_{1} f_{1}=e_{1}$. Thus $e_{2}+\cdots+e_{s}=f_{2}+\cdots+f_{t}$. Continuing in this way, we also have that $e_{2}=f_{2}, \ldots, e_{s}=f_{s}$ by renumbering $f_{j}$. Then $f_{s+1}+\cdots+f_{t}=0$, which implies that $f_{s+1}=\cdots=f_{t}=0$. Hence we have the result.

Let $R$ be a ring such that $I(R)$ is a finite additive set. Then any nonzero $e \in I(R)$ can be expressed uniquely as a sum of a finite number of orthogonal primitive idempotents in $R$ by Theorem 2.4. Here the unique number is called the length of $e$ and is denoted by $\ell(e)$.

Lemma 2.5. Let $R$ be a ring such that $I(R)$ is a finite additive set and let $e=e_{1}+e_{2}+\cdots+e_{s}, f=f_{1}+f_{2}+\cdots+f_{t} \in I(R)$ with $\ell(e)=s, \ell(f)=t$ where all $e_{i}$ 's (resp. $f_{j}$ 's) are mutually orthogonal primitive idempotents of $R$. If ef $=0$, then $e_{i} f_{j}=0$ for all $i, j$.

Proof. First, we observe that if $e_{i} f_{j}, e_{k} f_{\ell} \neq 0$ where $i \neq k$ or $j \neq \ell$, then $e_{i} f_{j} \neq e_{k} f_{\ell}$. Indeed, without loss of generality, we can let $i \neq k$. If $e_{i} f_{j}=e_{k} f_{\ell}$, then $e_{i} f_{j}=e_{i}\left(e_{k} f_{\ell}\right)=\left(e_{i} e_{k}\right) f_{\ell}=0$, a contradiction. Note that $e_{i} f_{j}=\sum e_{k} f_{\ell}$ for all $i, j(i \neq k$ or $j \neq \ell)$. Thus $e_{i} f_{j}=e_{i}\left(e_{i} f_{j}\right) f_{j}=$ $e_{i}\left(\sum e_{k} f_{\ell}\right) f_{j}=\left(\sum_{j \neq \ell} e_{i} f_{\ell}\right) f_{j}=0$.

Lemma 2.6. Let $R$ be a ring. If $I(R)$ is a finite additive set, then $M(R) \backslash\{0\}$ is a complete set of primitive central idempotents.

Proof. By Lemma 2.3, $M(R) \neq\{0\}$. Since $I(R)$ is finite, we can let $M(R) \backslash\{0\}=\left\{e_{1}, e_{2}, \cdots, e_{r}\right\}$. Since $I(R)$ is additive, all idempotents are central by Lemma 2.1. Since $I(R)$ is additive, $M(R)$ is
clearly additive in $I(R)$. Hence $M(R) \backslash\{0\}$ is orthogonal Lemma 2.2. Thus $\left\{e_{1}, e_{2}, \ldots, e_{r}\right\}$ is the set of primitive central idempotents of $R$. To prove that $\left\{e_{1}, e_{2}, \ldots, e_{r}\right\}$ is a complete set of primitive central idempotents, it remains to show that $1=e_{1}+e_{2}+\cdots+e_{r}$. Consider $e=e_{1}+e_{2}+\cdots+e_{r-1} \in I(R)$. Note that $e \neq 0,1$ and $1=e+(1-e)$, which is a sum of orthogonal idempotents of $R$. By Theorem 2.4, there exist mutually orthogonal primitive idempotents $f_{1}, f_{2}, \ldots, f_{s}$ of $R$ such that $1-e=f_{1}+f_{2}+\cdots+f_{s}$. Assume that $s \geq 2$. Let $T=$ $\left\{e_{1}, \ldots, e_{r-1}, f_{1}, \ldots, f_{s}\right\}$. Then since $e(1-e)=0, e_{i} f_{j}=0$ for all $i, j$ by Lemma 2.5. Thus $T$ is orthogonal with $|T|=r-1+s>r=|M(R) \backslash\{0\}|$. Since $T \subseteq M(R) \backslash\{0\}$, we arrive at a contradiction. Hence $s=1$, and then $f_{1}=e_{r}$. Therefore, we have $1=e_{1}+e_{2}+\cdots+e_{r}$.

Theorem 2.7. Let $R$ be a ring. Then $I(R)$ is a finite additive set if and only if $M(R) \backslash\{0\}$ is a complete set of primitive central idempotents, $\operatorname{char}(R)=2$ and $R$ is fully basic.

Proof. $(\Rightarrow)$ It follows from Lemma 2.1, 2.6 and Theorem 2.4.
$(\Leftarrow)$ Suppose that $M(R) \backslash\{0\}$ is a complete set of primitive central idempotents, $\operatorname{char}(R)=2$ and $R$ is fully basic. Since $M(R) \backslash\{0\}$ is finite and $R$ is fully basic, $I(R)$ is clearly finite. To show that $I(R)$ is additive, let $e, f$ be arbitrary nonzero distinct idempotents of $R$. Since $R$ is fully basic, then $e=e_{1}+e_{2}+\cdots+e_{r}$ and $f=f_{1}+f_{2}+\cdots+f_{s}$ where all $e_{i}$ 's (resp. $f_{j}$ 's) are mutually orthogonal primitive idempotents of $R$. Since $\operatorname{char}(R)=2$, we can assume that all $e_{i}, f_{j}$ are distinct. Since $M(R) \backslash\{0\}$ is orthogonal, $(e+f)^{2}=e+f$, and so $I(R)$ is additive.

Corollary 2.8. Let $R$ be a ring. If $I(R)$ is a finite additive set, then $R$ is a finite direct product of indecomposable rings and $|I(R) \cup\{1\}|=2^{r}$ where $|M(R) \backslash\{0\}|=r$.

Proof. Let $M(R) \backslash\{0\}=\left\{e_{1}, e_{2}, \ldots, e_{r}\right\}$. By Lemma 2.6, $M(R) \backslash\{0\}$ is a complete set of primitive central idempotents. Since $1=e_{1}+e_{2}+$ $\cdots+e_{r}$, for all $a \in R, a=e_{1} a+e_{2} a+\cdots+e_{r} a$, which is a sum of mutually orthogonal elements of $R$, and so $R=e_{1} R \oplus e_{2} R \oplus \cdots \oplus e_{r} R$, which is a finite direct product of indecomposable rings. Since each $e_{i} \in$ $M(R) \backslash\{0\}$ is a primitive idempotent, $\left|I\left(e_{i} R\right)\right|=2$, and so $|I(R)|=2^{r}$ where $|M(R) \backslash\{0\}|=r$.

Remark 1. Note that if $R$ is a ring such that $I(R)$ is additive, then $I(R) \cup\{1\}$ forms a Boolean subring of $R$. In particular, if $I(R)$ is a finite additive set, then $I(R) \cup\{1\} \simeq \underbrace{\mathbb{Z}_{2} \oplus \cdots \oplus \mathbb{Z}_{2}}_{r-\text { summands }}(r=|M(R) \backslash\{0\}|)$.

Corollary 2.9. Every finite Boolean ring $R$ is isomorphic to $\underbrace{\mathbb{Z}_{2} \oplus \cdots \oplus \mathbb{Z}_{2}}_{r-\text { summands }}$ where $r=|M(R) \backslash\{0\}|$.

Proof. It follows from Remark 1.

## 3. A von-Neumann regular ring with a finite additive set of idempotents

Let $R$ be a ring, $X(R)$ (simply, denoted by $X$ ) the set of all nonzero, nonunits of $R, G(R)$ (simply, denoted by $G$ ) the group of all units of $R$. In this section, we will consider a group action of $G$ on $X$ given by $((g, x) \longrightarrow g x)$ from $G \times X$ to $X$, called the regular action. For each $x \in X$, we define the orbit of $x$ by $o(x)=\{g x: \forall g \in G\}$ under the regular action of $G$ on $X$.

The following lemma was shown in [4, Lemma 2.3].
Lemma 3.1. Lemma 3.1 Let $R$ be a ring such that $G$ acts on $X$ by the regular action. Then $R$ is unit-regular if and only if every orbit under the regular action is $o(e)$ for some idempotent $e \in X$.

Remark 2. Let $R$ be a ring such that $I(R)$ is a finite additive set. Then we note that (1) $R$ is regular if and only if $R$ is unit-regular if and only if $R$ is strongly regular if and only if $R$ is abelian regular; (2) In a regular ring $R$, there are a finite number of orbits under the regular action of $G$ on $X$.

Theorem 3.2. Let $R$ be an abelian regular ring. If $G$ is an abelian group, then $R$ is a commutative ring.

Proof. First, let $x \in X$ and $g \in G$ be arbitrary. Since $R$ is abelian regular, $R$ is unit-regular. Thus there exists an element $u \in G$ such that $x=x u x$, and so $u x, x u \in I(R)$. Since $R$ is abelian, $x u$ and $u x$ are central. Since $G$ is abelian, $(g x) u=g(x u)=(x u) g=x(u g)=$ $x(g u)=(x g) u$, and so $g x=x g$. Next, let $x, y \in X$ be arbitrary. If $x \in I(R)$, then $x y=y x$. If $x \notin I(R)$, then $v x, x v \in I(R)$ for some
$v \in G$. Then $v(x y)=(v x) y=y(v x)=(y v) x=(v y) x=v(y x)$ by the above argument, and so $x y=y x$. Consequently, $R$ is a commutative ring.

Corollary 3.3. Let $R$ be a regular ring such that $I(R)$ is a finite additive set. If $G$ is abelian, then $R$ is a commutative ring.

Proof. It follows from Remark 2 and Theorem 3.2.
Theorem 3.4. Let $R$ be an abelian regular ring having a complete set of primitive idempotents. If $G$ is cyclic, then $R$ is a finite direct product of finite fields.

Proof. Let $S=\left\{e_{1}, e_{2}, \ldots, e_{r}\right\}$ be a complete set of central primitive idempotents in $R$. Then $R=e_{1} R \times e_{2} R \times \cdots \times e_{r} R$, a finite product of local rings. Note that since the Jacobson radical of $R$ is zero, each $e_{i} R$ is a division ring. Since $G$ is abelian, $R$ is a commutative ring by Theorem 3.2, and then each $e_{i} R$ is a field. Since $G$ is cyclic, each $G\left(e_{i} R\right)$ is also cyclic, and so $e_{i} R$ is finite by [6, Exercise 12, p. 426]. Hence $R$ is a finite direct product of finite fields.

Corollary 3.5. Let $R$ be a regular ring such that $I(R)$ is a finite additive set. If $G$ is cyclic, then $R$ is a finite direct product of finite fields of characteristic 2 with distinct orders.

Proof. It follows from Remark 2 and Theorem 3.4.
Theorem 3.6. Let $R$ be an abelian regular ring with a complete set of primitive idempotents. If $G$ is finite, then $R$ is finite.

Proof. Let $x \in X$ be arbitrary. Then $x=g e$ for some $g \in G$ and some $e \in I(R)$ by Lemma 3.1. Let $\left\{e_{1}, e_{2}, \ldots, e_{r}\right\}$ be a complete set of primitive idempotents of $R$. Since $1=e_{1}+e_{2}+\cdots+e_{r}, x=g e=$ $\sum_{e e_{i} \neq 0} g\left(e e_{i}\right)$. Since $G$ is finite, $o\left(e e_{i}\right)$ is finite for all $e e_{i} \neq 0$. Hence $X$ is finite, and then $R$ is finite by [3, Theorem 2.2].

Corollary 3.7. Corollary 3.7 Let $R$ be a regular ring such that $I(R)$ is a finite additive set. Then we have the following:
(1) If $G$ is finite, then $R$ is finite.
(2) $G=\{1\}$ if and only if $R$ is a finite Boolean ring.

Proof. (1) It follows from Remark 2 and Theorem 3.6.
(2) By (1), if $G=\{1\}$, then $R$ is finite by (1). Since $R$ is a regular ring such that $I(R)$ is a finite additive set, $R$ is unit-regular by Remark 2.

Let $x \in X$ be arbitrary. Then $x=g e$ for some $g \in G$ and $e \in I(R)$ by Lemma 3.1. Since $G=\{1\}, x=e$, and so $X=I(R) \backslash\{0\}$. Hence $R=I(R) \cup\{1\}$ is a Boolean ring. The converse follows from Corollary 2.11.

## References

[1] D. Dolz̆an, Multiplicative sets of idempotents in a finite ring, J. Algebra 304 (2006), 271-277.
[2] H. K. Grover, D. Khurana and S. Singh, Rings with multiplicative sets of primitive idempotents, Comm. Algebra 37 (2009), 2583-2590.
[3] J. Han, Regular action in a ring with a finite number of orbits, Comm. Algebra 25 (1997), 2227-2236.
[4] J. Han, Group actions in a unit-regular ring, Comm. Algebra 27 (1999), 33533361.
[5] J. Han and S. Park, An additive set of idempotents in rings, Comm. Algebra 40 (2012), 3551-3557.
[6] W. K. Nicholson, Introduction to Abstract Algebra, PWS Publishing Co., Boston, 1993.

Department of Mathematics Education
Pusan National University
Pusan 609-735, Korea
E-mail: jchan@pusan.ac.kr
Department of Mathematics
Dong-A University
Pusan 604-714, Korea
E-mail: swpark@donga.ac.kr


[^0]:    Received August 16, 2013. Revised October 15, 2013. Accepted October 28, 2013. 2010 Mathematics Subject Classification: Primary 16U99, Secondary 06E20.
    Key words and phrases: primitive idempotents, additive, set of idempotents, vonNewmann regular ring.
    $*$ Corresponding author.
    This work was supported by a 2-Year Research Grant of Pusan National University.
    (c) The Kangwon-Kyungki Mathematical Society, 2013.

    This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

