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A FINITE ADDITIVE SET OF IDEMPOTENTS IN

RINGS

Juncheol Han and Sangwon Park∗

Abstract. Abstract. Let R be a ring with identity 1, I(R) 6= {0}
be the set of all nonunit idempotents in R, and M(R) be the set of all
primitive idempotents and 0 of R. We say that I(R) is additive if for
all e, f ∈ I(R) (e 6= f), e+f ∈ I(R). In this paper, the following are
shown: (1) I(R) is a finite additive set if and only if M(R) \ {0} is a
complete set of primitive central idempotents, char(R) = 2 and every
nonzero idempotent of R can be expressed as a sum of orthogonal
primitive idempotents of R; (2) for a regular ring R such that I(R)
is a finite additive set, if the multiplicative group of all units of R
is abelian (resp. cyclic), then R is a commutative ring (resp. R is a
finite direct product of finite fields).

1. Introduction and basic definitions

Throughout this paper, let R be an associative ring with identity
1. The Jacobson radical of R is denoted by J(R). We use I(R) for
the set of all nonunit idempotents of R, while we let M(R) be the set
of all primitive idempotents and 0 of R. We use Z(R) and char(R)
to denote the center of R and the characteristic of R, respectively. A
nonempty subset of a ring R is called multiplicative if it is closed under
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multiplication. Recall that two idempotents e, f ∈ R are said to be
orthogonal if ef = fe = 0. Also recall that a nonzero idempotent
e ∈ R is said to be primitive if it can not be written as a sum of
two nonzero orthogonal idempotents, or equivalently, eR (resp. Re) is
indecomposable as a right (resp. left) R-module. Recall that R is said
to have a complete set of primitive idempotents if there exists a finite
set of mutually orthogonal primitive idempotents whose sum is 1.

In [1], Dolz̆an has shown that a finite ring R with M(R) multiplicative
is a product of local rings. In [2], Grover et al. have extended Dolz̆an’s
result as follows: if R is a ring with a complete set of primitive idem-
potents, then M(R) is multiplicative if and only if R is a finite direct
product of connected rings. On the other hand, in [5], it was shown
that in case that R is a direct product of countably many (not finite)
connected rings M(R) could not be multiplicative.

We say that I(R) is additive if for all e, f ∈ I(R) (e 6= f), e+f ∈ I(R)
(equivalently, ef = −fe). For example, if R is a Boolean ring, then
I(R) is additive. Also M(R) is said to be additive in I(R) if for all
e, f ∈M(R) (e 6= f), e + f ∈ I(R). For example, if R is a Boolean ring
or a direct product of local rings, then M(R) is additive in I(R). Note
that if I(R) is additive, then M(R) is additive in I(R), but the converse
is not true by considering a finite direct product of infinite fields. We
also note that I(R) is commuting if and only if I(R) is multiplicative
if and only if I(R) ⊆ Z(R). By [5, Lemma 1] if I(R) is additive, then
I(R) ⊆ Z(R). But the converse may not be true (e.g., Z3⊕Z3⊕Z3). In
[5], it was shown that I(R) is additive if and only if I(R) is commuting
and char(R) = 2; M(R) is additive in I(R) if and only if M(R) is the
set of primitive pairwise orthogonal idempotents.

We call a nonzero idempotent e in a ring R fully basic if e can be
expressed as a sum of mutually orthogonal primitive idempotents in R,
and we call a ring R a fully basic ring if all idempotents are fully basic.
For example, a finite direct product of local rings and T2(Z2), the ring
of all upper triangular 2×2 matrices over Z2, are fully basic rings. Note
that in a fully basic ring R (e.g., T2(Z2)), I(R) may not be multiplicative.

In this paper, we will investigate a ring R such that I(R) 6= {0}
is a finite additive set. In Section 2, we will show that if I(R) is a
finite additive set of a ring R, then there exists at least one primitive
idempotent, and we will also show that I(R) is a finite additive set of
a ring R if and only if M(R) \ {0} is a complete set of minimal central
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idempotents, the characteristic of R (denoted by char(R)) is 2 and R is
fully basic.

Recall that a ring R is von-Neumann regular (simply regular) (resp.
unit-regular) provided that for any a ∈ R there exists an element r ∈ R
(resp. a unit u ∈ R) such that a = ara (resp. a = aua). A ring
R is strongly regular provided that for any a ∈ R there exists some
element r ∈ R such that a = ra2. Also a ring R is abelian provided
all idempotents in R are central. In section 3, we will show that for a
regular ring R such that I(R) is a finite additive set, if G, the group of all
units of R, is an abelian (resp. a cyclic) group, then R is a commutative
ring (resp. R is a finite direct product of finite fields).

2. Some properties of a ring with a finite additive set of
idempotents

Throughout this section, we assume that I(R) 6= {0} for any ring R.
Let � denote the usual relation on I(R), that is, e � f (or f � e) means
that ef = fe = e (refer [1]). In particular, e ≺ f (or f � e) means that
e � f and e 6= f . A nonzero idempotent e is called minimal if there is
no idempotent strictly between 0 and e according to the partial ordering
�. Note that the minimal idempotents in this sense are precisely the
primitive idempotents of R.

Lemma 2.1. Let R be a ring. Then we have the following:
(1) [5, Theorem 2.5] I(R) is additive if and only if I(R) is commuting
and char(R) = 2.
(2) [5, Corollary 2.6] M(R) is additive in I(R) if and only if M(R) is
the set of mutually primitive orthogonal idempotents.

Lemma 2.2. Let R be a ring such that I(R) is an additive set and let
0 6= e ∈ I(R). If ce = 0 for all c ∈ I(R) (c 6= e), then e is primitive.

Proof. Assume that e is not primitive. Then e = a+b for some nonzero
orthogonal idempotents a, b of R. Since e is not primitive, a, b 6= e. By
assumption, 0 = ae = a+ab, and 0 = be = ba+ b and so a = b = 0 since
a, b are orthogonal, a contradiction. Hence e is primitive.

Lemma 2.3. Let R be a ring. If I(R) is a finite additive set in R,
then M(R) 6= {0}.
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Proof. Note that if I(R) is orthogonal (i.e., ab = ba = 0 for all a, b ∈
I(R)), then each nonzero e ∈ I(R) is primitive. Indeed, assume that
e ∈ I(R) is not primitive. Then e = a + b for some nonzero orthogonal
idempotents a, b of R. Clearly, a 6= b. If a 6= e (resp. b 6= e), then
0 = ea = a (resp. 0 = eb = b), a contradiction. Hence each e ∈ I(R)
is primitive. Suppose that I(R) is not orthogonal. Then there exist
e, f ∈ I(R) (e 6= f) such that ef 6= 0. Thus e � ef . If ef is primitive,
we are done. If ef is not primitive, there exists a nonzero e1 ∈ I(R)
such that e1(ef) 6= 0 by Lemma 2.2. Thus ef � e1(ef). Continuing this
procedure then, starting now with e1, we arrive at a strictly descending
relation

ef � e1(ef) � e2e1(ef) � · · · .
Since I(R) is finite, this relation terminates with some nonzero
et · · · e1(ef) ∈ I(R), and et · · · e1(ef) must then be primitive. Hence
M(R) 6= {0}.

Theorem 2.4. Let R be a ring such that I(R) is a finite additive set.
Then we have the following:

(1) R is fully basic.
(2) If e = e1 + · · ·+ es = f1 + · · ·+ ft for any nonzero e ∈ I(R) where

all ei’s (resp. fj’s) are mutually orthogonal primitive idempotents
of R, then s = t and fj can be renumbered so that ei = fi.

Proof. (1) Let 0 6= e ∈ I(R) be arbitrary. We have M(R) 6= {0} by
Lemma 2.3. If e is primitive, then we are done. Suppose that e is not
primitive. Then by the proof given in Lemma 2.3, there exists a nonzero
f1 ∈ I(R) such that f1e (= ef1) is primitive, and so e = ef1 + (e− ef1),
which is a sum of orthogonal idempotents of R. Note that e � (e− ef1).
If e − ef1 is primitive, then we are done. Suppose that e − ef1 is not
primitive. By the similar argument, there exists a nonzero f2 ∈ I(R)
such that(e − ef1)f2 is primitive. Thus e − ef1 = (e − ef1)f2 + ((e −
ef1)− (e− ef1)f2)), which is also a sum of orthogonal idempotents of R.
Also note that e − ef1 � ((e − ef1) − (e − ef1)f2)). Continuing in this
procedure, we get a strictly descending sequence of relations

a0 � a1 � a2 � · · ·
where a0 = e, an+1 = an−anfn+1 with anfn+1 ∈M(R) for some nonzero
idempotent fn+1 of R and an 6= 0 for all n = 1, 2, . . . . Next, we will show
that all fn are distinct. To show this, we will proceed it by induction
on n. If n = 2, then clearly, f1 6= f2. Assume that this holds for n,
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i.e., fi 6= fj for all distinct i, j (1 ≤ i, j ≤ n). For n + 1, it is enough
to show that fn+1 6= fi for all i = 1, . . . , n. Assume that fn+1 = fi for
some i (1 ≤ i ≤ n). Then anfn+1 = (an−1 − an−1fn)fn+1 = (an−1 −
an−1fn)fi = an−1fi = (an−2 − an−2fn−1)fi = an−2fi = · · · = aifi = 0,
which is a contradiction to anfn+1 ∈ M(R). Hence fn+1 6= fi for all
i = 1, . . . , n. Since I(R) is finite and all fn are distinct, the above
sequence must terminate, and so an is a primitive idempotent of R.
Hence e = a0f1 + a1f2 + · · ·+ an−1fn + an, which is a sum of orthogonal
primitive idempotents in R.

(2) We can let s ≤ t without loss of generality. Since e = e1 + · · · +
es = f1 + · · · + ft where all ei’s (resp. fj’s) are mutually orthogonal
primitive idempotents of R, e1 = e1e = e1f1 + · · · + e1ft. Since e1 is
a primitive idempotent of R, e1 = e1f1 and e1f2 = · · · = e1ft = 0 by
renumbering fj. Also, we have f1 = ef1 = e1f1 + · · · + esft. Since f1
is a primitive idempotent of R and e1f1 6= 0, f1 = e1f1 = e1. Thus
e2 + · · · + es = f2 + · · · + ft. Continuing in this way, we also have that
e2 = f2, . . . , es = fs by renumbering fj. Then fs+1 + · · ·+ ft = 0, which
implies that fs+1 = · · · = ft = 0. Hence we have the result.

Let R be a ring such that I(R) is a finite additive set. Then any
nonzero e ∈ I(R) can be expressed uniquely as a sum of a finite number
of orthogonal primitive idempotents in R by Theorem 2.4. Here the
unique number is called the length of e and is denoted by `(e).

Lemma 2.5. Let R be a ring such that I(R) is a finite additive set
and let e = e1 + e2 + · · · + es, f = f1 + f2 + · · · + ft ∈ I(R) with
`(e) = s, `(f) = t where all ei’s (resp. fj’s) are mutually orthogonal
primitive idempotents of R. If ef = 0, then eifj = 0 for all i, j.

Proof. First, we observe that if eifj, ekf` 6= 0 where i 6= k or j 6= `,
then eifj 6= ekf`. Indeed, without loss of generality, we can let i 6= k. If
eifj = ekf`, then eifj = ei(ekf`) = (eiek)f` = 0, a contradiction. Note
that eifj =

∑
ekf` for all i, j (i 6= k or j 6= `). Thus eifj = ei(eifj)fj =

ei(
∑

ekf`)fj = (
∑

j 6=` eif`)fj = 0.

Lemma 2.6. Let R be a ring. If I(R) is a finite additive set, then
M(R) \ {0} is a complete set of primitive central idempotents.

Proof. By Lemma 2.3, M(R) 6= {0}. Since I(R) is finite, we can
let M(R) \ {0} = {e1, e2, · · · , er}. Since I(R) is additive, all idem-
potents are central by Lemma 2.1. Since I(R) is additive, M(R) is
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clearly additive in I(R). Hence M(R) \ {0} is orthogonal Lemma 2.2.
Thus {e1, e2, . . . , er} is the set of primitive central idempotents of R. To
prove that {e1, e2, . . . , er} is a complete set of primitive central idem-
potents, it remains to show that 1 = e1 + e2 + · · · + er. Consider
e = e1 + e2 + · · ·+ er−1 ∈ I(R). Note that e 6= 0, 1 and 1 = e + (1− e),
which is a sum of orthogonal idempotents of R. By Theorem 2.4,
there exist mutually orthogonal primitive idempotents f1, f2, . . . , fs of
R such that 1 − e = f1 + f2 + · · · + fs. Assume that s ≥ 2. Let T =
{e1, . . . , er−1, f1, . . . , fs}. Then since e(1− e) = 0, eifj = 0 for all i, j by
Lemma 2.5. Thus T is orthogonal with |T | = r−1+s > r = |M(R)\{0}|.
Since T ⊆ M(R) \ {0}, we arrive at a contradiction. Hence s = 1, and
then f1 = er. Therefore, we have 1 = e1 + e2 + · · ·+ er.

Theorem 2.7. Let R be a ring. Then I(R) is a finite additive set if
and only if M(R)\{0} is a complete set of primitive central idempotents,
char(R) = 2 and R is fully basic.

Proof. (⇒) It follows from Lemma 2.1, 2.6 and Theorem 2.4.

(⇐) Suppose that M(R) \ {0} is a complete set of primitive central
idempotents, char(R) = 2 and R is fully basic. Since M(R)\{0} is finite
and R is fully basic, I(R) is clearly finite. To show that I(R) is additive,
let e, f be arbitrary nonzero distinct idempotents of R. Since R is fully
basic, then e = e1 + e2 + · · ·+ er and f = f1 + f2 + · · ·+ fs where all ei’s
(resp. fj’s) are mutually orthogonal primitive idempotents of R. Since
char(R) = 2, we can assume that all ei, fj are distinct. Since M(R)\{0}
is orthogonal, (e + f)2 = e + f , and so I(R) is additive.

Corollary 2.8. Let R be a ring. If I(R) is a finite additive set, then
R is a finite direct product of indecomposable rings and |I(R)∪{1}| = 2r

where |M(R) \ {0}| = r.

Proof. Let M(R) \ {0} = {e1, e2, . . . , er}. By Lemma 2.6, M(R) \ {0}
is a complete set of primitive central idempotents. Since 1 = e1 + e2 +
· · · + er, for all a ∈ R, a = e1a + e2a + · · · + era, which is a sum of
mutually orthogonal elements of R, and so R = e1R⊕ e2R⊕ · · · ⊕ erR,
which is a finite direct product of indecomposable rings. Since each ei ∈
M(R) \ {0} is a primitive idempotent, |I(eiR)| = 2, and so |I(R)| = 2r

where |M(R) \ {0}| = r.
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Remark 1. Note that if R is a ring such that I(R) is additive, then
I(R)∪{1} forms a Boolean subring of R. In particular, if I(R) is a finite
additive set, then I(R) ∪ {1} ' Z2 ⊕ · · · ⊕ Z2︸ ︷︷ ︸

r−summands

(r = |M(R) \ {0}|).

Corollary 2.9. Every finite Boolean ring R is isomorphic to
Z2 ⊕ · · · ⊕ Z2︸ ︷︷ ︸

r−summands

where r = |M(R) \ {0}|.

Proof. It follows from Remark 1.

3. A von-Neumann regular ring with a finite additive set of
idempotents

Let R be a ring, X(R) (simply, denoted by X) the set of all nonzero,
nonunits of R, G(R) (simply, denoted by G) the group of all units of
R. In this section, we will consider a group action of G on X given by
((g, x) −→ gx) from G × X to X, called the regular action. For each
x ∈ X, we define the orbit of x by o(x) = {gx : ∀g ∈ G} under the
regular action of G on X.

The following lemma was shown in [4, Lemma 2.3].

Lemma 3.1. Lemma 3.1 Let R be a ring such that G acts on X by the
regular action. Then R is unit-regular if and only if every orbit under
the regular action is o(e) for some idempotent e ∈ X.

Remark 2. Let R be a ring such that I(R) is a finite additive set.
Then we note that (1) R is regular if and only if R is unit-regular if and
only if R is strongly regular if and only if R is abelian regular; (2) In
a regular ring R, there are a finite number of orbits under the regular
action of G on X.

Theorem 3.2. Let R be an abelian regular ring. If G is an abelian
group, then R is a commutative ring.

Proof. First, let x ∈ X and g ∈ G be arbitrary. Since R is abelian
regular, R is unit-regular. Thus there exists an element u ∈ G such
that x = xux, and so ux, xu ∈ I(R). Since R is abelian, xu and ux
are central. Since G is abelian, (gx)u = g(xu) = (xu)g = x(ug) =
x(gu) = (xg)u, and so gx = xg. Next, let x, y ∈ X be arbitrary. If
x ∈ I(R), then xy = yx. If x /∈ I(R), then vx, xv ∈ I(R) for some
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v ∈ G. Then v(xy) = (vx)y = y(vx) = (yv)x = (vy)x = v(yx) by the
above argument, and so xy = yx. Consequently, R is a commutative
ring.

Corollary 3.3. Let R be a regular ring such that I(R) is a finite
additive set. If G is abelian, then R is a commutative ring.

Proof. It follows from Remark 2 and Theorem 3.2.

Theorem 3.4. Let R be an abelian regular ring having a complete
set of primitive idempotents. If G is cyclic, then R is a finite direct
product of finite fields.

Proof. Let S = {e1, e2, . . . , er} be a complete set of central primitive
idempotents in R. Then R = e1R× e2R× · · · × erR, a finite product of
local rings. Note that since the Jacobson radical of R is zero, each eiR is
a division ring. Since G is abelian, R is a commutative ring by Theorem
3.2, and then each eiR is a field. Since G is cyclic, each G(eiR) is also
cyclic, and so eiR is finite by [6, Exercise 12, p. 426]. Hence R is a finite
direct product of finite fields.

Corollary 3.5. Let R be a regular ring such that I(R) is a finite
additive set. If G is cyclic, then R is a finite direct product of finite
fields of characteristic 2 with distinct orders.

Proof. It follows from Remark 2 and Theorem 3.4.

Theorem 3.6. Let R be an abelian regular ring with a complete set
of primitive idempotents. If G is finite, then R is finite.

Proof. Let x ∈ X be arbitrary. Then x = ge for some g ∈ G and
some e ∈ I(R) by Lemma 3.1. Let {e1, e2, . . . , er} be a complete set of
primitive idempotents of R. Since 1 = e1 + e2 + · · · + er, x = ge =∑

eei 6=0 g(eei). Since G is finite, o(eei) is finite for all eei 6= 0. Hence X

is finite, and then R is finite by [3, Theorem 2.2].

Corollary 3.7. Corollary 3.7 Let R be a regular ring such that I(R)
is a finite additive set. Then we have the following:

(1) If G is finite, then R is finite.
(2) G = {1} if and only if R is a finite Boolean ring.

Proof. (1) It follows from Remark 2 and Theorem 3.6.
(2) By (1), if G = {1}, then R is finite by (1). Since R is a regular ring
such that I(R) is a finite additive set, R is unit-regular by Remark 2.
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Let x ∈ X be arbitrary. Then x = ge for some g ∈ G and e ∈ I(R)
by Lemma 3.1. Since G = {1}, x = e, and so X = I(R) \ {0}. Hence
R = I(R) ∪ {1} is a Boolean ring. The converse follows from Corollary
2.11.
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