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A FINITE ADDITIVE SET OF IDEMPOTENTS IN
RINGS

JUNCHEOL HAN AND SANGWON PARK*

ABSTRACT. Abstract. Let R be a ring with identity 1, I(R) # {0}
be the set of all nonunit idempotents in R, and M (R) be the set of all
primitive idempotents and 0 of R. We say that I(R) is additive if for
alle, f € I(R) (e # f), e+ f € I(R). In this paper, the following are
shown: (1) I(R) is a finite additive set if and only if M (R)\ {0} is a
complete set of primitive central idempotents, char(R) = 2 and every
nonzero idempotent of R can be expressed as a sum of orthogonal
primitive idempotents of R; (2) for a regular ring R such that I(R)
is a finite additive set, if the multiplicative group of all units of R
is abelian (resp. cyclic), then R is a commutative ring (resp. R is a
finite direct product of finite fields).

1. Introduction and basic definitions

Throughout this paper, let R be an associative ring with identity
1. The Jacobson radical of R is denoted by J(R). We use I(R) for
the set of all nonunit idempotents of R, while we let M (R) be the set
of all primitive idempotents and 0 of R. We use Z(R) and char(R)
to denote the center of R and the characteristic of R, respectively. A
nonempty subset of a ring R is called multiplicative if it is closed under

Received August 16, 2013. Revised October 15, 2013. Accepted October 28, 2013.

2010 Mathematics Subject Classification: Primary 16U99, Secondary 06E20.

Key words and phrases: primitive idempotents, additive, set of idempotents, von-
Newmann regular ring.

*Corresponding author.

This work was supported by a 2-Year Research Grant of Pusan National Univer-
sity.

© The Kangwon-Kyungki Mathematical Society, 2013.

This is an Open Access article distributed under the terms of the Creative com-
mons Attribution Non-Commercial License (http://creativecommons.org/licenses/by
-nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduc-
tion in any medium, provided the original work is properly cited.



464 Juncheol Han and Sangwon Park

multiplication. Recall that two idempotents e, f € R are said to be
orthogonal if ef = fe = 0. Also recall that a nonzero idempotent
e € R is said to be primitive if it can not be written as a sum of
two nonzero orthogonal idempotents, or equivalently, eR (resp. Re) is
indecomposable as a right (resp. left) R-module. Recall that R is said
to have a complete set of primitive idempotents if there exists a finite
set of mutually orthogonal primitive idempotents whose sum is 1.

In [1], Dolzan has shown that a finite ring R with M (R) multiplicative
is a product of local rings. In [2], Grover et al. have extended DolZan’s
result as follows: if R is a ring with a complete set of primitive idem-
potents, then M (R) is multiplicative if and only if R is a finite direct
product of connected rings. On the other hand, in [5], it was shown
that in case that R is a direct product of countably many (not finite)
connected rings M (R) could not be multiplicative.

We say that I(R) is additive if for all e, f € I(R) (e # f), e+ f € I(R)
(equivalently, ef = —fe). For example, if R is a Boolean ring, then
I(R) is additive. Also M(R) is said to be additive in I(R) if for all
e,f € M(R) (e # f), e+ f € I(R). For example, if R is a Boolean ring
or a direct product of local rings, then M (R) is additive in I(R). Note
that if I(R) is additive, then M (R) is additive in I(R), but the converse
is not true by considering a finite direct product of infinite fields. We
also note that I(R) is commuting if and only if /(R) is multiplicative
if and only if I(R) C Z(R). By [5, Lemma 1] if I(R) is additive, then
I(R) € Z(R). But the converse may not be true (e.g., Zs @® Z3 ® Z3). In
[5], it was shown that I(R) is additive if and only if I(R) is commuting
and char(R) = 2; M(R) is additive in I(R) if and only if M(R) is the
set of primitive pairwise orthogonal idempotents.

We call a nonzero idempotent e in a ring R fully basic if e can be
expressed as a sum of mutually orthogonal primitive idempotents in R,
and we call a ring R a fully basic ring if all idempotents are fully basic.
For example, a finite direct product of local rings and T5(Zs), the ring
of all upper triangular 2 x 2 matrices over Zs, are fully basic rings. Note
that in a fully basic ring R (e.g., T5(Z2)), I(R) may not be multiplicative.

In this paper, we will investigate a ring R such that I(R) # {0}
is a finite additive set. In Section 2, we will show that if I(R) is a
finite additive set of a ring R, then there exists at least one primitive
idempotent, and we will also show that I(R) is a finite additive set of
a ring R if and only if M(R) \ {0} is a complete set of minimal central
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idempotents, the characteristic of R (denoted by char(R)) is 2 and R is
fully basic.

Recall that a ring R is von-Neumann regular (simply regular) (resp.
unit-regular) provided that for any a € R there exists an element r € R
(resp. a unit u € R) such that a = ara (resp. a = aua). A ring
R is strongly regular provided that for any a € R there exists some
element r € R such that a = ra®. Also a ring R is abelian provided
all idempotents in R are central. In section 3, we will show that for a
regular ring R such that I(R) is a finite additive set, if G, the group of all
units of R, is an abelian (resp. a cyclic) group, then R is a commutative
ring (resp. R is a finite direct product of finite fields).

2. Some properties of a ring with a finite additive set of
idempotents

Throughout this section, we assume that I(R) # {0} for any ring R.
Let < denote the usual relation on I(R), that is, e < f (or f > e) means
that ef = fe = e (refer [1]). In particular, e < f (or f > e) means that
e X fand e # f. A nonzero idempotent e is called minimal if there is
no idempotent strictly between 0 and e according to the partial ordering
<. Note that the minimal idempotents in this sense are precisely the
primitive idempotents of R.

LEMMA 2.1. Let R be a ring. Then we have the following:
(1) [5, Theorem 2.5] I(R) is additive if and only if I(R) is commuting
and char(R) = 2.
(2) [5, Corollary 2.6] M(R) is additive in I(R) if and only if M(R) is
the set of mutually primitive orthogonal idempotents.

LEMMA 2.2. Let R be a ring such that I(R) is an additive set and let
0#e€I(R). If ce=0 for all c € I(R) (c # e), then e is primitive.

Proof. Assume that e is not primitive. Then e = a+b for some nonzero
orthogonal idempotents a,b of R. Since e is not primitive, a,b # e. By
assumption, 0 = ae = a+ab, and 0 = be = ba+ b and so a = b = 0 since
a, b are orthogonal, a contradiction. Hence e is primitive. O

LEMMA 2.3. Let R be a ring. If I(R) is a finite additive set in R,
then M (R) # {0}.
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Proof. Note that if I(R) is orthogonal (i.e., ab = ba = 0 for all a,b €
I(R)), then each nonzero e € I(R) is primitive. Indeed, assume that
e € I(R) is not primitive. Then e = a + b for some nonzero orthogonal
idempotents a,b of R. Clearly, a # b. If a # e (resp. b # e), then
0 =ea = a (resp. 0 = eb = b), a contradiction. Hence each e € I(R)
is primitive. Suppose that I(R) is not orthogonal. Then there exist
e,f € I(R) (e # f) such that ef # 0. Thus e = ef. If ef is primitive,
we are done. If ef is not primitive, there exists a nonzero e; € I(R)
such that e;(ef) # 0 by Lemma 2.2. Thus ef > e;(ef). Continuing this
procedure then, starting now with e;, we arrive at a strictly descending
relation

ef = ei(ef) = exer(ef) = -
Since I(R) is finite, this relation terminates with some nonzero
e;---ei(ef) € I(R), and e;---ey(ef) must then be primitive. Hence
M(R) # {0}. O

THEOREM 2.4. Let R be a ring such that I(R) is a finite additive set.
Then we have the following:
(1) R is fully basic.
(2) Ife=e;1+---+es= fi1+---+ fi for any nonzero e € I(R) where
all e;’s (resp. f;’s) are mutually orthogonal primitive idempotents
of R, then s =t and f; can be renumbered so that e; = f;.

Proof. (1) Let 0 # e € I(R) be arbitrary. We have M(R) # {0} by
Lemma 2.3. If e is primitive, then we are done. Suppose that e is not
primitive. Then by the proof given in Lemma 2.3, there exists a nonzero
fi1 € I(R) such that fie (= ef;) is primitive, and so e = ef; + (e — efy),
which is a sum of orthogonal idempotents of R. Note that e > (e —ef;).
If e — ef; is primitive, then we are done. Suppose that e — ef; is not
primitive. By the similar argument, there exists a nonzero f € I(R)
such that(e — efy)fo is primitive. Thus e —ef) = (e —ef1)fo + ((e —
efi) — (e —ef1)f2)), which is also a sum of orthogonal idempotents of R.
Also note that e —ef; > ((e — ef1) — (e — efi1)f2)). Continuing in this
procedure, we get a strictly descending sequence of relations

ag = ap > Qg > + -

where ag = e, apy1 = ap — ay fre1 With a, fr11 € M(R) for some nonzero
idempotent f,,; of R and a,, # 0 foralln =1,2,.... Next, we will show
that all f,, are distinct. To show this, we will proceed it by induction
on n. If n = 2, then clearly, fi # fo. Assume that this holds for n,
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ie., f; # f; for all distinct 4,5 (1 < ¢,7 < n). For n+ 1, it is enough
to show that f,.1 # f; for all = 1,...,n. Assume that f,,; = f; for
some i (1 < i < n). Then a,fri1 = (a1 — an_1fn)for1 = (an-1 —
anflfn>fi = anflfi = (an72 - anf2fn71)fi = an72fi = = aifi = 07
which is a contradiction to a,f,11 € M(R). Hence f,.1 # f; for all
i = 1,...,n. Since I(R) is finite and all f, are distinct, the above
sequence must terminate, and so a, is a primitive idempotent of R.
Hence e = agf1 + a1 fo+ -+ + an_1 fn + a,, which is a sum of orthogonal
primitive idempotents in R.

(2) We can let s < t without loss of generality. Since e =e; + -+ +
es = fi + -+ f; where all e;’s (resp. f;’s) are mutually orthogonal
primitive idempotents of R, e; = eje = ey f; + -+ + e1f;. Since ey is
a primitive idempotent of R, e; = e;f; and e;fy = - = e fy = 0 by
renumbering f;. Also, we have f; = efi = ei1fi + -+ + esfi. Since fi
is a primitive idempotent of R and e;f; # 0, fi = e1fi = e;. Thus
es+---+es = fo+ -+ f;. Continuing in this way, we also have that
es = fa2,...,es = fs by renumbering f;. Then f,41 +---+ f; = 0, which
implies that fs,1 =--- = f; = 0. Hence we have the result. n

Let R be a ring such that I(R) is a finite additive set. Then any
nonzero e € I(R) can be expressed uniquely as a sum of a finite number
of orthogonal primitive idempotents in R by Theorem 2.4. Here the
unique number is called the length of e and is denoted by ¢(e).

LEMMA 2.5. Let R be a ring such that I(R) is a finite additive set
and let e = e + ey + - +es,f = f+ fo+ -+ f € [(R) with
l(e) = s,4(f) = t where all e;’s (resp. f;’s) are mutually orthogonal
primitive idempotents of R. If ef = 0, then e; f; = 0 for all 4, j.

Proof. First, we observe that if e;f;, exf¢ # 0 where i # k or j # £,
then e;f; # e fe. Indeed, without loss of generality, we can let 7 # k. If
e;fj = erfo, then e;f; = e;(exfr) = (eiex) f = 0, a contradiction. Note
that 6ifj = Zekfg for all Z,j (Z 7é k OI'j 7é g) Thus eifj = ei(e,»fj)fj =
ei(Xenfe)fi = (X meife)fi = 0. [

LEMMA 2.6. Let R be a ring. If I(R) is a finite additive set, then
M(R) \ {0} is a complete set of primitive central idempotents.

Proof. By Lemma 2.3, M(R) # {0}. Since I(R) is finite, we can

let M(R)\ {0} = {ej,eq,--+,e.}. Since I(R) is additive, all idem-
potents are central by Lemma 2.1. Since I(R) is additive, M(R) is
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clearly additive in I(R). Hence M(R) \ {0} is orthogonal Lemma 2.2.
Thus {ey, e, ..., e} is the set of primitive central idempotents of R. To
prove that {ej,es,...,e,} is a complete set of primitive central idem-
potents, it remains to show that 1 = e; + ey + -+ + ¢,. Consider
e=e1+e+--+e._1 €I(R). Note that e #0,1 and 1 = e+ (1 — e),
which is a sum of orthogonal idempotents of R. By Theorem 2.4,
there exist mutually orthogonal primitive idempotents fi, fo,..., fs of
R such that 1 —e = f1 + fo + -+ 4+ fs. Assume that s > 2. Let T =
{e1,...,e,—1, f1,..., fs}. Then since e(1 —e€) =0, e;f; = 0 for all 7, j by
Lemma 2.5. Thus T is orthogonal with |T'| = r—1+4s > r = |[M(R)\{0}|.
Since T' C M(R) \ {0}, we arrive at a contradiction. Hence s = 1, and
then f; = e,. Therefore, we have 1 =¢e; +e3 4+ -+ +e,. O

THEOREM 2.7. Let R be a ring. Then I(R) is a finite additive set if
and only if M(R)\{0} is a complete set of primitive central idempotents,
char(R) = 2 and R is fully basic.

Proof. (=) It follows from Lemma 2.1, 2.6 and Theorem 2.4.

(<) Suppose that M(R) \ {0} is a complete set of primitive central
idempotents, char(R) = 2 and R is fully basic. Since M (R)\ {0} is finite
and R is fully basic, I(R) is clearly finite. To show that I(R) is additive,
let e, f be arbitrary nonzero distinct idempotents of R. Since R is fully
basic, then e = e; +ey+---+e, and f = fi + fo+---+ f, where all ¢;’s
(resp. f;’s) are mutually orthogonal primitive idempotents of R. Since
char(R) = 2, we can assume that all e;, f; are distinct. Since M (R)\ {0}
is orthogonal, (e + f)* = e+ f, and so I(R) is additive. O

COROLLARY 2.8. Let R be a ring. If I(R) is a finite additive set, then

R is a finite direct product of indecomposable rings and |I(R)U{1}| = 2"
where |M(R) \ {0}| = r.

Proof. Let M(R)\ {0} = {ey,e9,...,e.}. By Lemma 2.6, M(R)\ {0}
is a complete set of primitive central idempotents. Since 1 = ey + e5 +
-+ e, forall a € R, a = eja + esa + - -+ + e,a, which is a sum of
mutually orthogonal elements of R, and so R=e;R® esRD --- D e, R,
which is a finite direct product of indecomposable rings. Since each e; €
M(R) \ {0} is a primitive idempotent, |/(e;R)| = 2, and so |I(R)| = 2"
where |[M(R) \ {0} =r. O
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REMARK 1. Note that if R is a ring such that I(R) is additive, then
I(R)U{1} forms a Boolean subring of R. In particular, if I(R) is a finite
additive set, then I[(R) U{1} ~Zy @ --- B Zy (r = |[M(R) \ {0}]).

———

r—summands

COROLLARY 2.9. Every finite Boolean ring R is isomorphic to
Lo @ -+ @ Zy where r = |M(R) \ {0}].
N—————

r—summands

Proof. Tt follows from Remark 1. O

3. A von-Neumann regular ring with a finite additive set of
idempotents

Let R be a ring, X (R) (simply, denoted by X') the set of all nonzero,
nonunits of R, G(R) (simply, denoted by G) the group of all units of
R. In this section, we will consider a group action of G on X given by
((g,2) — gx) from G x X to X, called the regular action. For each
r € X, we define the orbit of by o(z) = {gx : Vg € G} under the
regular action of G on X.

The following lemma was shown in [4, Lemma 2.3].

LEMMA 3.1. Lemma 3.1 Let R be a ring such that G acts on X by the
regular action. Then R is unit-regular if and only if every orbit under
the regular action is o(e) for some idempotent e € X.

REMARK 2. Let R be a ring such that I(R) is a finite additive set.
Then we note that (1) R is regular if and only if R is unit-regular if and
only if R is strongly regular if and only if R is abelian regular; (2) In
a regular ring R, there are a finite number of orbits under the regular
action of G on X.

THEOREM 3.2. Let R be an abelian regular ring. If G' is an abelian
group, then R is a commutative ring.

Proof. First, let x € X and g € G be arbitrary. Since R is abelian
regular, R is unit-regular. Thus there exists an element v € G such
that © = zux, and so uz,zu € I(R). Since R is abelian, zu and uz
are central. Since G is abelian, (gz)u = g(zu) = (xu)g = z(ug) =
z(gu) = (xg)u, and so gr = xg. Next, let x,y € X be arbitrary. If
r € I(R), then zy = yz. If x ¢ I(R), then vz,zv € I(R) for some
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v € G. Then v(zy) = (va)y = y(vzr) = (yv)z = (vy)r = v(yx) by the
above argument, and so xy = yx. Consequently, R is a commutative
ring. O

COROLLARY 3.3. Let R be a regular ring such that I(R) is a finite
additive set. If G is abelian, then R is a commutative ring.

Proof. 1t follows from Remark 2 and Theorem 3.2. [

THEOREM 3.4. Let R be an abelian regular ring having a complete
set of primitive idempotents. If G is cyclic, then R is a finite direct
product of finite fields.

Proof. Let S = {ey,eq,...,e.} be a complete set of central primitive
idempotents in R. Then R =e;R X esR X --- X e, R, a finite product of
local rings. Note that since the Jacobson radical of R is zero, each e; R is
a division ring. Since G is abelian, R is a commutative ring by Theorem
3.2, and then each ¢;R is a field. Since G is cyclic, each G(e;R) is also
cyclic, and so e; R is finite by [6, Exercise 12, p. 426]. Hence R is a finite
direct product of finite fields. O

COROLLARY 3.5. Let R be a regular ring such that I(R) is a finite
additive set. If G is cyclic, then R is a finite direct product of finite
fields of characteristic 2 with distinct orders.

Proof. Tt follows from Remark 2 and Theorem 3.4. m

THEOREM 3.6. Let R be an abelian regular ring with a complete set
of primitive idempotents. If G is finite, then R is finite.

Proof. Let x € X be arbitrary. Then z = ge for some g € G and
some e € I(R) by Lemma 3.1. Let {e1,ea,...,¢e,.} be a complete set of
primitive idempotents of R. Since 1 = e; + e+ --- 4+ €., * = ge =
> ceiz0 9(€€;). Since G is finite, o(ee;) is finite for all ee; # 0. Hence X
is finite, and then R is finite by [3, Theorem 2.2]. O

COROLLARY 3.7. Corollary 3.7 Let R be a regular ring such that I(R)
is a finite additive set. Then we have the following:
(1) If G is finite, then R is finite.
(2) G = {1} if and only if R is a finite Boolean ring.

Proof. (1) It follows from Remark 2 and Theorem 3.6.
(2) By (1), if G = {1}, then R is finite by (1). Since R is a regular ring
such that I(R) is a finite additive set, R is unit-regular by Remark 2.
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Let x € X be arbitrary. Then z = ge for some g € G and e € I(R)
by Lemma 3.1. Since G = {1}, x = e, and so X = I(R) \ {0}. Hence
R = I(R)U {1} is a Boolean ring. The converse follows from Corollary
2.11. [
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