• 제목/요약/키워드: eIF1A

검색결과 1,821건 처리시간 0.029초

A FINITE ADDITIVE SET OF IDEMPOTENTS IN RINGS

  • Han, Juncheol;Park, Sangwon
    • Korean Journal of Mathematics
    • /
    • 제21권4호
    • /
    • pp.463-471
    • /
    • 2013
  • Let R be a ring with identity 1, $I(R){\neq}\{0\}$ be the set of all nonunit idempotents in R, and M(R) be the set of all primitive idempotents and 0 of R. We say that I(R) is additive if for all e, $f{\in}I(R)$ ($e{\neq}f$), $e+f{\in}I(R)$. In this paper, the following are shown: (1) I(R) is a finite additive set if and only if $M(R){\backslash}\{0\}$ is a complete set of primitive central idempotents, char(R) = 2 and every nonzero idempotent of R can be expressed as a sum of orthogonal primitive idempotents of R; (2) for a regular ring R such that I(R) is a finite additive set, if the multiplicative group of all units of R is abelian (resp. cyclic), then R is a commutative ring (resp. R is a finite direct product of finite field).

ON SEMI-REGULAR INJECTIVE MODULES AND STRONG DEDEKIND RINGS

  • Renchun Qu
    • 대한수학회보
    • /
    • 제60권4호
    • /
    • pp.1071-1083
    • /
    • 2023
  • The main motivation of this paper is to introduce and study the notions of strong Dedekind rings and semi-regular injective modules. Specifically, a ring R is called strong Dedekind if every semi-regular ideal is Q0-invertible, and an R-module E is called a semi-regular injective module provided Ext1R(T, E) = 0 for every 𝓠-torsion module T. In this paper, we first characterize rings over which all semi-regular injective modules are injective, and then study the semi-regular injective envelopes of R-modules. Moreover, we introduce and study the semi-regular global dimensions sr-gl.dim(R) of commutative rings R. Finally, we obtain that a ring R is a DQ-ring if and only if sr-gl.dim(R) = 0, and a ring R is a strong Dedekind ring if and only if sr-gl.dim(R) ≤ 1, if and only if any semi-regular ideal is projective. Besides, we show that the semi-regular dimensions of strong Dedekind rings are at most one.

UNITARY INTERPOLATION ON AX = Y IN ALG$\mathcal{L}$

  • Kang, Joo-Ho
    • 호남수학학술지
    • /
    • 제31권3호
    • /
    • pp.421-428
    • /
    • 2009
  • Given operators X and Y acting on a Hilbert space $\mathcal{H}$, an interpolating operator is a bounded operator A such that AX = Y. In this paper, we showed the following : Let $\mathcal{L}$ be a subspace lattice acting on a Hilbert space $\mathcal{H}$ and let $X_i$ and $Y_i$ be operators in B($\mathcal{H}$) for i = 1, 2, ${\cdots}$. Let $P_i$ be the projection onto $\overline{rangeX_i}$ for all i = 1, 2, ${\cdots}$. If $P_kE$ = $EP_k$ for some k in $\mathbb{N}$ and all E in $\mathcal{L}$, then the following are equivalent: (1) $sup\;\{{\frac{{\parallel}E^{\perp}({\sum}^n_{i=1}Y_if_i){\parallel}}{{\parallel}E^{\perp}({\sum}^n_{i=1}Y_if_i){\parallel}}:f{\in}H,n{\in}{\mathbb{N}},E{\in}\mathcal{L}}\}$ < ${\infty}$ range $\overline{rangeY_k}\;=\;\overline{rangeX_k}\;=\;\mathcal{H}$, and < $X_kf,\;X_kg$ >=< $Y_kf,\;Y_kg$ > for some k in $\mathbb{N}$ and for all f and g in $\mathcal{H}$. (2) There exists an operator A in Alg$\mathcal{L}$ such that $AX_i$ = $Y_i$ for i = 1, 2, ${\cdots}$ and AA$^*$ = I = A$^*$A.

MARCINKIEWICZ-TYPE LAW OF LARGE NUMBERS FOR DOUBLE ARRAYS

  • Hong, Dug-Hun;Volodin, Andrei I.
    • 대한수학회지
    • /
    • 제36권6호
    • /
    • pp.1133-1143
    • /
    • 1999
  • Chaterji strengthened version of a theorem for martin-gales which is a generalization of a theorem of Marcinkiewicz proving that if $X_n$ is a sequence of independent, identically distributed random variables with $E{\mid}X_n{\mid}^p\;<\;{\infty}$, 0 < P < 2 and $EX_1\;=\;1{\leq}\;p\;<\;2$ then $n^{-1/p}{\sum^n}_{i=1}X_i\;\rightarrow\;0$ a,s, and in $L^p$. In this paper, we probe a version of law of large numbers for double arrays. If ${X_{ij}}$ is a double sequence of random variables with $E{\mid}X_{11}\mid^log^+\mid X_{11}\mid^p\;<\infty$, 0 < P <2, then $lim_{m{\vee}n{\rightarrow}\infty}\frac{{\sum^m}_{i=1}{\sum^n}_{j=1}(X_{ij-a_{ij}}}{(mn)^\frac{1}{p}}\;=0$ a.s. and in $L^p$, where $a_{ij}$ = 0 if 0 < p < 1, and $a_{ij}\;=\;E[X_{ij}\midF_[ij}]$ if $1{\leq}p{\leq}2$, which is a generalization of Etemadi's marcinkiewicz-type SLLN for double arrays. this also generalize earlier results of Smythe, and Gut for double arrays of i.i.d. r.v's.

  • PDF

CLOSED CONVEX SPACELIKE HYPERSURFACES IN LOCALLY SYMMETRIC LORENTZ SPACES

  • Sun, Zhongyang
    • 대한수학회보
    • /
    • 제54권6호
    • /
    • pp.2001-2011
    • /
    • 2017
  • In 1997, H. Li [12] proposed a conjecture: if $M^n(n{\geqslant}3)$ is a complete spacelike hypersurface in de Sitter space $S^{n+1}_1(1)$ with constant normalized scalar curvature R satisfying $\frac{n-2}{n}{\leqslant}R{\leqslant}1$, then is $M^n$ totally umbilical? Recently, F. E. C. Camargo et al. ([5]) partially proved the conjecture. In this paper, from a different viewpoint, we study closed convex spacelike hypersurface $M^n$ in locally symmetric Lorentz space $L^{n+1}_1$ and also prove that $M^n$ is totally umbilical if the square of length of second fundamental form of the closed convex spacelike hypersurface $M^n$ is constant, i.e., Theorem 1. On the other hand, we obtain that if the sectional curvature of the closed convex spacelike hypersurface $M^n$ in locally symmetric Lorentz space $L^{n+1}_1$ satisfies $K(M^n)$ > 0, then $M^n$ is totally umbilical, i.e., Theorem 2.

CHARACTERIZATIONS OF THE PARETO DISTRIBUTION BY CONDITIONAL EXPECTATIONS OF RECORD VALUES

  • Lee, Min-Young
    • 대한수학회논문집
    • /
    • 제18권1호
    • /
    • pp.127-131
    • /
    • 2003
  • Let X$_1$, X$_2$,... be a sequence of independent and identically distributed random variables with continuous cumulative distribution function F(x). X$_j$ is an upper record value of this sequence if X$_j$ > max {X$_1$,X$_2$,...,X$_{j-1}$}. We define u(n)=min{j$\mid$j> u(n-1), X$_j$ > X$_{u(n-1)}$, n $\geq$ 2} with u(1)=1. Then F(x) = 1-x$^{\theta}$, x > 1, ${\theta}$ < -1 if and only if (${\theta}$+1)E[X$_{u(n+1)}$$\mid$X$_{u(m)}$=y] = ${\theta}E[X_{u(n)}$\mid$X_{u(m)}=y], (\theta+1)^2E[X_{u(n+2)}$\mid$X_{u(m)}=y] = \theta^2E[X_{u(n)}$\mid$X_{u(m)}=y], or (\theta+1)^3E[X_{u(n+3)}$\mid$X_{u(m)}=y] = \theta^3E[X_{u(n)}$\mid$X_{u(m)}=y], n $\geq$ M+1$.

SYMBOLIC DYNAMICS AND UNIFORM DISTRIBUTION MODULO 2

  • Choe, Geon H.
    • 대한수학회논문집
    • /
    • 제9권4호
    • /
    • pp.881-889
    • /
    • 1994
  • Let ($X, \Beta, \mu$) be a measure space with the $\sigma$-algebra $\Beta$ and the probability measure $\mu$. Throughouth this article set equalities and inclusions are understood as being so modulo measure zero sets. A transformation T defined on a probability space X is said to be measure preserving if $\mu(T^{-1}E) = \mu(E)$ for $E \in B$. It is said to be ergodic if $\mu(E) = 0$ or i whenever $T^{-1}E = E$ for $E \in B$. Consider the sequence ${x, Tx, T^2x,...}$ for $x \in X$. One may ask the following questions: What is the relative frequency of the points $T^nx$ which visit the set E\ulcorner Birkhoff Ergodic Theorem states that for an ergodic transformation T the time average $lim_{n \to \infty}(1/N)\sum^{N-1}_{n=0}{f(T^nx)}$ equals for almost every x the space average $(1/\mu(X)) \int_X f(x)d\mu(x)$. In the special case when f is the characteristic function $\chi E$ of a set E and T is ergodic we have the following formula for the frequency of visits of T-iterates to E : $$ lim_{N \to \infty} \frac{$\mid${n : T^n x \in E, 0 \leq n $\mid$}{N} = \mu(E) $$ for almost all $x \in X$ where $$\mid$\cdot$\mid$$ denotes cardinality of a set. For the details, see [8], [10].

  • PDF

ON A CHARACTERIZATION OF THE EXPONENTIAL DISTRIBUTION BY CONDITIONAL EXPECTATIONS OF RECORD VALUES

  • Lee, Min-Young
    • 대한수학회논문집
    • /
    • 제16권2호
    • /
    • pp.287-290
    • /
    • 2001
  • Let X$_1$, X$_2$, … be a sequence of independent and identically distributed random variables with continuous cumulative distribution function F(x). X(sub)j is an upper record value of this sequence if X(sub)j > max {X$_1$, X$_2$, …, X(sub)j-1}. We define u(n) = min {j│j > u(n-1), X(sub)j > X(sub)u(n-1), n $\geq$ 2} with u(1) = 1. Then F(x) = 1 - e(sup)-x/c, x > 0 if and only if E[X(sub)n(n+1) - X(sub)u(n)│X(sub)u(m) = y] = c or E[X(sub)u(n+2) - X(sub)u(n)│X(sub)u(m) = y] = 2c, n $\geq$ m+1.

  • PDF

SURFACES FOLIATED BY ELLIPSES WITH CONSTANT GAUSSIAN CURVATURE IN EUCLIDEAN 3-SPACE

  • Ali, Ahmed T.;Hamdoon, Fathi M.
    • Korean Journal of Mathematics
    • /
    • 제25권4호
    • /
    • pp.537-554
    • /
    • 2017
  • In this paper, we study the surfaces foliated by ellipses in three dimensional Euclidean space ${\mathbf{E}}^3$. We prove the following results: (1) The surface foliated by an ellipse have constant Gaussian curvature K if and only if the surface is flat, i.e. K = 0. (2) The surface foliated by an ellipse is a flat if and only if it is a part of generalized cylinder or part of generalized cone.