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ELEMENTARY MATRIX REDUCTION OVER

ZABAVSKY RINGS

Huanyin Chen and Marjan Sheibani

Abstract. We prove, in this note, that a Zabavsky ring R is an elemen-
tary divisor ring if and only if R is a Bézout ring. Many known results
are thereby generalized to much wider class of rings, e.g. [4, Theorem 14],
[7, Theorem 4], [9, Theorem 1.2.14], [11, Theorem 4] and [12, Theorem
7].

1. Introduction

Throughout this paper, all rings are commutative with an identity. A matrix
A (not necessarily square) over a ring R admits diagonal reduction if there exist
invertible matrices P and Q such that PAQ is a diagonal matrix (dij), for
which dii is a divisor of d(i+1)(i+1) for each i. A ring R is called an elementary
divisor ring provided that every matrix over R admits a diagonal reduction.
A ring R is a Hermite ring if every 1 × 2 matrix over R admits a diagonal
reduction. As is well known, a ring R is Hermite if and only if for all a, b ∈ R
there exist a1, b1 ∈ R such that a = a1d, b = b1d and a1R + b1R = R ([9,
Theorem 1.2.5]). A ring is a Bézout ring if every finitely generated ideal is
principal. In 1956, Gillman and Henriksen gave an example of a Bézout ring
(with zero divisors) that is not an elementary divisor ring. In fact, we have
{elementary divisor rings} ( {Hermite rings} ( {Bézout rings} (cf. [9]). An
attractive problem is to investigate various conditions under which a Bézout
ring is an elementary divisor ring.

We recall that an element c ∈ R is adequate provided that for any a ∈ R
there exist some r, s ∈ R such that (1) c = rs; (2) rR+aR = R; (3) s′R+aR 6=
R for each non-invertible divisor s′ of s. Whether a ring with various adequate
properties is an elementary divisor ring has been studied by many authors. A
ring R is clean provided that every element in R is the sum of a unit and an
idempotent. In [11, Theorem 4], Zabavsky and Bilavska proved an interesting
result: every Bézout ring in which zero is adequate is a clean ring. Recently,
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Pihua claimed that every ring in which zero is adequate is semiregular [7,
Theorem 4], and so such kind of ring is an elementary divisor ring [9, Theorem
2.5.2]. A Bézout ring is called an adequate ring provided that every nonzero
element is adequate (cf. [10]). In his research of elementary divisor domains,
Helmer proved that every adequate domain is an elementary divisor ring. After
his work, Kaplansky showed that an adequate ring whose zero divisors are in
the radical is an elementary divisor ring. Helmer also showed that an adequate
ring is an elementary divisor ring if and only it is a Hermite ring. For general
results about adequate conditions, we refer the reader to Zabavsky’s book [9].

Recall that a ring R has stable range 1 if aR+ bR = R with a, b ∈ R implies
that there exists a y ∈ R such that a+by ∈ R is invertible. Such condition plays
an important role in algebraic K-theory (cf. [2]). It includes many kind of rings,
e.g., regular rings, semiregular rings, π-regular rings, local rings, clean rings,
etc. Domsha and Vasiunyk combined this condition with adequate condition
together. A ring R is called to have adequate range 1 if aR + bR = R with
a, b ∈ R implies that there exists a y ∈ R such that a+ by ∈ R is adequate. It
was proved that every Bézout domain having adequate range 1 is an elementary
divisor ring [4, Theorem 14].

In this note, we present a new type of rings over which every matrix admits
an elementary diagonal reduction. We say that c ∈ R is feckly adequate if for
any a ∈ R there exist some r, s ∈ R such that (1) c ≡ rs (mod J(R)); (2)
rR+ aR = R; (3) s′R+ aR 6= R for each non-invertible divisor s′ of s. We call
a ring R is a Zabavsky ring provided that aR+bR = R implies that there exists
a y ∈ R such that a+ by ∈ R is feckly adequate. We prove, in this note, that a
Zabavsky ring R is an elementary divisor ring if and only if R is a Bézout ring.
Many known results are thereby generalized to much wider class of rings, e.g.
[4, Theorem 14], [7, Theorem 4], [9, Theorem 1.2.14], [11, Theorem 4] and [12,
Theorem 7].

We shall use J(R) and U(R) to denote the Jacobson radical of R and the
set of all units in R, respectively. A ring R is called a domain if there is no any
nonzero zero divisor of R.

2. Nearly adequate rings

A Bézout ring R is called a nearly adequate ring provided that zero is feckly
adequate in R. For the further use, we investigate the necessary and sufficient
conditions under which a ring R is nearly adequate. A ring R is regular if for
any a ∈ R there exists a b ∈ R such that a = aba. A ring R is π-regular if for
any a ∈ R there exists n ∈ N such that an = anban for some b ∈ R. We prove,
a Bézout ring R is nearly adequate if and only if R/J(R) is regular if and only
if R/J(R) is π-regular. Examples of nearly adequate rings in which zero is not
adequate are provided. We begin with:
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Lemma 2.1. Let R be a ring. Then R/J(R) is π-regular if and only if for any

a ∈ R, there exists an n ∈ N, an element e ∈ R, a unit u ∈ R and a w ∈ J(R)
such that an = eu+ w and e− e2 ∈ J(R).

Proof. (=⇒) Let a ∈ R. Then an = anban for some n ∈ N. Set e = anb and

u = 1 − anb + an. Then e2 = e ∈ R/J(R) and
(
u
)−1

= 1− anb+ banb in
R/J(R). As units lift modulo J(R), we see that u ∈ U(R). Set w := an − eu.
Then we obtain an = eu+ w, where e2 − e, w ∈ J(R).

(⇐=) For any a ∈ R, there exists an n ∈ N, an element e ∈ R, a unit u ∈ R
and a w ∈ J(R) such that an = eu+ w and e− e2 ∈ J(R). Hence, an = eu in

R/J(R). Therefore an = anu−1an, as required. �

Lemma 2.2. Let R be a Bézout ring. If R/J(R) is π-regular, then R is nearly

adequate.

Proof. Suppose that R/J(R) is π-regular. Let a ∈ R be an arbitrary element.
In light of Lemma 2.1, there exists an element e ∈ R, a unit u ∈ R and a w ∈
J(R) such that an = eu+w(n ∈ N) and e− e2 ∈ J(R). Then (1− e)e ∈ J(R).

Clearly, anu−1 + (1 − e) = 1 + wu−1 ∈ U(R), and so anu−1
(
1 + wu−1

)−1
+

(1 − e)
(
1 + wu−1

)−1
= 1. Hence, (1 − e)R + anR = R. This implies that

(1 − e)R + aR = R. If s is a non-invertible divisor of e, then e = ss′ for
some s′ ∈ R. If sR + aR = R, then sR + anR = R. Thus, we can find
some x, y ∈ R such that sx + any = 1. Hence, sx + (eu + w)y = 1, and so
s(x + s′uy) = 1 − wy ∈ U(R). This implies that s is invertible, an absurdity.
Therefore sR+ aR 6= R. Accordingly, R is nearly adequate. �

Recall that a ring is feckly clean provided that for any a ∈ R there exists an
element e ∈ R such that a − e ∈ U(R) and e − e2 ∈ J(R). As is well known,
a ring R is feckly clean if and only if aR + bR = R with a, b ∈ R implies that
there are x, y ∈ R such that a|x, b|y, xy ∈ J(R) and xR + yR = R, if and only
if Max(R) is zero-dimensional ([6, Theorem 3.13 and Proposition 3.12]). For
more topological characterizations of such type of rings, we refer the reader to
[3].

Lemma 2.3. Every nearly adequate ring is feckly clean.

Proof. Let R be a nearly adequate ring. Let x ∈ R. Then we have some
r, s ∈ R such that rs ∈ J(R), where rR + xR = R and s′R + xR 6= R for any
noninvertible divisor s′ of s. We claim that rR + sR = R. If not, rR + sR =
hR 6= R. Thus, h ∈ R is a noninvertible divisor of s; hence that hR+ xR 6= R.
But h is a divisor of r, we get hR + xR = R, which is impossible. Write
rc + sd = 1 in R. Then (rc)2 − rc = (rc)2 − rc

(
rc + sd) = −(rs)(cd) ∈ J(R).

Set e = rc. Then e2 − e ∈ J(R).
Claim I. (x−e)R+rR = R. If not, (x−e)R+rR = tR 6= R. Then rR ⊆ tR,

and so xR ⊆ tR. This implies that rR + xR ⊆ tR 6= R, a contradiction.
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Claim II. (x − e)R + sR = R. If not, (x − e)R + sR = tR 6= R. Then t
is a noninvertible divisor of s, and so tR + xR 6= R. But eR + sR = R, and
so eR + tR = R. Write x − e = tw with w ∈ R. Then e = x − tw, and so
eR+ tR ⊆ tR+ xR 6= R, which is impossible.

Therefore (x− e)R+ rsR = R. Write (x− e)p+(rs)q = 1 for some p, q ∈ R.
As rs ∈ J(R), we deduce that (x−e)p = 1−(rs)q ∈ U(R), and so x−e ∈ U(R).
This completes the proof. �

Lemma 2.4. Let R be a nearly adequate ring. Then J(R) = {x | x − u ∈
U(R) for any u ∈ U(R)}.
Proof. Clearly, J(R) ⊆ {x | x − u ∈ U(R) for any u ∈ U(R)}. Let x ∈ R and
x − u ∈ U(R) for any u ∈ U(R). Let r ∈ R. Then xR + (1 − xr)R = R.
Since R is nearly clean, by Lemma 2.3, R/J(R) is clean, and then R/J(R)
has stable range 1 by [6, Theorem 3.10]. It follows that R has stable range
1. Thus, we have a y ∈ R such that u := x + (1 − xr)y ∈ U(R). Hence,
x− u = −(1− xr)y ∈ U(R), and then 1 − xr ∈ U(R). Therefore x ∈ J(R), as
desired. �

We are now ready to prove:

Theorem 2.5. Let R be a Bézout ring. Then the following are equivalent:

(1) R is nearly adequate.

(2) R/J(R) is regular.

(3) R/J(R) is π-regular.

Proof. (1) ⇒ (2) Let x ∈ R. Then we have some r, s ∈ R such that rs ∈ J(R),
where rR + xR = R and s′R + xR 6= R for any noninvertible divisor s′ of s.
As in the proof of Lemma 2.3, we see that rR + sR = R. Since rR + xR =
rR + sR = R, we get rR + sxR = R. Write rc + sxd = 1 in R. Set e = rc.
Then e2−e = (rc)2−rc = −(rc)(sxd) ∈ J(R). Let u be an arbitrary invertible
element of R.

Claim I. (u − ex)R + rR = R. If not, (u − ex)R + rR = tR 6= R. Then
rR ⊆ tR, and so u ∈ eR+ tR ⊆ rR + tR ⊆ tR. This implies that t ∈ U(R), a
contradiction.

Claim II. (u− ex)R+ sR = R. If not, (u− ex)R+ sR = tR 6= R. Then t is
a noninvertible divisor of s, and so tR+ xR 6= R. It follows from eR+ sR = R
that eR+ tR = R. Write u− ex = tw with w ∈ R. Then u = ex+ tw, and so
uR ⊆ tR+ xR 6= R, an absurdity.

Finally, (u − ex)R + rsR = R. As rs ∈ J(R), we get u − ex ∈ U(R). This
implies that

(
x − (1 − e)x

)
− u = ex − u ∈ U(R). In view of Lemma 2.3, R

has stable range 1. It follows by Lemma 2.4 that x− (1− e)x ∈ J(R). Clearly,

1− e = sxd ∈ xR. Therefore x = x(sd)x in R/J(R), and so R/J(R) is regular.
(2) ⇒ (3) This is obvious.
(3) ⇒ (1) In view of Lemma 2.2, R is nearly adequate, as asserted. �

Corollary 2.6. Every nearly adequate ring is an elementary divisor ring.
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Proof. Let R be a nearly adequate ring. Then R/J(R) is regular, by Theo-
rem 2.5. In view of [5, Theorem 2.6], R/J(R) is an elementary divisor ring.
Therefore R is an elementary divisor ring, in terms of [9, Theorem 2.5.2]. �

Corollary 2.7. A ring R is nearly adequate if and only if

(1) R is a Bézout ring;
(2) Zero is adequate in R/J(R).

Proof. (=⇒) (1) is obvious. In view of Theorem 2.5, R/J(R) is regular, proving
(2), as every element in R/J(R) is adequate.

(⇐=) For any x ∈ R, we can find some r, s ∈ R such that 0 = rs, where
r
(
R/J(R)

)
+ x

(
R/J(R)

)
= R/J(R) and s′

(
R/J(R)

)
+ x

(
R/J(R)

)
6= R/J(R)

for any noninvertible divisor s′ of s. Thus, rs ∈ J(R). Further, rR + xR = R
and s′R+ xR 6= R for any noninvertible divisor s′ of s. Therefore R is nearly
adequate. �

We note that “ ⇒ ” in Corollary 2.7 can not be proved in a direct route
by the definitions. Let R = Z[α], where α2 = 1. Choose J = (1 + α), s′ =
5− 3α, s = 3 + α ∈ R. Then s′ = 2 is a noninvertible divisor of s = 4 in R/J ,
while s′ is not a noninvertible divisor of s in R.

Recall that every idempotent lifts modulo a right ideal I of R provided that
if x− x2 ∈ I, then there exists an idempotent e ∈ R such that x− e ∈ I. We
have:

Corollary 2.8. Let R be a Bézout ring. Then zero is adequate in R if and

only if

(1) R is nearly adequate;
(2) Every idempotent lifts modulo J(R).

Proof. (=⇒) (1) is obvious. In view of [11, Theorem 4], R is clean, proving (2),
by the Nicholson Theorem (i.e., a ring is clean if and only if every idempotent
lifts modulo its any right ideal).

(⇐=) In view of Theorem 2.5, R/J(R) is regular. Since every idempotent
lifts modulo J(R), as in the proof of Lemma 2.2, zero is adequate in R. �

A ring R is semiregular if R/J(R) is regular and idempotents lift modulo
J(R). We now derive:

Corollary 2.9 ([7, Theorem 4]). Let R be a Bézout ring. Then zero is adequate

in R if and only if R is semiregular.

Proof. This is obvious, by Corollary 2.8 and Theorem 2.5. �

From Corollary 2.9, we observe that the difference between nearly adequate
rings and adequate rings is just to forget the lifting of idempotents. Further,
we claim that a Bézout ring R is a nearly adequate ring if and only if R/J(R)
is nearly adequate.

Example 2.10. Every finite Bézout ring is nearly adequate.
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Proof. Since every finite ring is π-regular, we complete the proof, by Theorem
2.5. �

Example 2.11. Let R = {m
n

| m,n ∈ Z, n 6= 0, 3 ∤ n, 5 ∤ n}. Then R is nearly
adequate, while zero is not adequate in R.

Proof. Let I = a
b
R+ c

d
R, where a

b
, c
d
∈ R. As Z is a principal ideal domain, we

can find some p ∈ Z such that aZ + cZ = pZ. One easily checks that I = pR.
Thus, R is a Bézout ring. As in the proof of [1, Example 17], R has only
two maximal ideals 3R and 5R. Since 3R + 5R = R, by Chinese Remainder
Theorem, we deduce that R/J(R) ∼= R/3R × R/5R ∼= Z3 × Z5. As Z3 and
Z5 are regular rings, R/J(R) is regular. It follows by Theorem 2.5 that R is
nearly adequate. As in the proof of [1, Example 17], R is not clean. In light of
[11, Theorem 4], zero is not adequate in R, as desired. �

Example 2.12. Let F be a field, and let R = F [[x, y]]. Let S = R− (x)
⋃
(y).

Then RS is nearly adequate, but zero is not adequate in RS .

Proof. As F [[x, y]]/(x) ∼= F [[y]] is an integral domain, we see that (x) is a prime
ideal of F [[x, y]]. Likewise, (y) is a prime ideal of R. Set S = R − (x)

⋃
(y).

Then S is a multiplicative closed subset of R. Let P be a maximal ideal of
RS . Then we can find an ideal Q of R such that P = QS such that Q

⋂
S = ∅.

Hence, Q ⊆ (x)
⋃
(y). Assume that Q * (x) and Q * (y). Then we can

find some b ∈ Q, but b 6∈ (x). Likewise, we have some c ∈ Q, but c 6∈ (y).
Set a = b + c. Then a ∈ Q, but a 6∈ (x)

⋃
(y). This gives a contradiction.

Hence, Q ⊆ (x) or Q ⊆ (y). It follows that QS ⊆ (x)S or QS ⊆ (y)S . By the
maximality of P , we get P = (x)S or (y)S . Thus, RS has exactly two maximal
ideals (x)S and (y)S . Accordingly, RS/J(RS) ∼= RS/(x)S ×RS/(y)S is regular.
Obviously, RS is a PID, and then it is a Bézout ring. In light of Theorem 2.5,
RS is nearly adequate. Obviously, RS is indecomposable. This implies that
RS is not clean; otherwise, it is local by [1, Theorem 3], which is impossible.
Therefore zero is not adequate in RS , by [11, Theorem 4]. �

3. Elementary matrix reduction

As is well known, an adequate ring is an elementary divisor ring if and only
if it is a Hermite ring ([9, Theorem 1.2.14]). The aim of this section is to extend
this result to any Zabavsky rings.

Lemma 3.1. Let R be a Bézout ring. If a ∈ R is feckly adequate, then R/aR
is nearly adequate.

Proof. Let b ∈ R/aR. Then there exist r, s ∈ R such that a ≡ rs (mod J(R)),
rR+bR = R and s′R+bR 6= R for any noninvertible divisor s′ of s. Hence, a ≡
rs

(
mod J(R/aR)

)
, i.e., rs ∈ J(R/aR). Clearly, r(R/aR)+ b(R/aR) = R/aR.

Let t ∈ R/aR be a noninvertible divisor of s. Then t is a divisor of s+ ak for
some k ∈ R. Write s + ak = tβ for some β ∈ R. Then s + rsk = tβ + w for
a w ∈ J(R), and so s(1 + rk) = tβ + w. If sR + tR = R, then sp + tq = 1
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for some p, q ∈ R. It follows that s(1 + rk)p + t(1 + rk)q = 1 + rk, and so
(tβ+w)p+ t(1+ rk)q = 1+ rk. As w ∈ J(R), we get r(−k)(1−wp)−1+ t(βp+
(1+rk)q)(1−wp)−1 = 1. This implies that rR+tR = R; hence, (rs)R+tR = R.
As a− rs ∈ J(R), we see that aR + tR = R, and then t ∈ R/aR is invertible,
a contradiction. Therefore sR + tR 6= R. Since R is a Bézout ring, we have a
noninvertible u ∈ R such that sR+ tR = uR. We infer that u is a noninvertible
divisor of s. Hence, uR + bR 6= R. This proves that u(R/aR) + b(R/aR) 6=
R/aR; otherwise, there exist x, y, z ∈ R such that ux+by = 1+az. This implies
that ux+by = 1+w′z+rsz = 1+w′z+ucrz for c ∈ R and w′ ∈ J(R), because
a−rs ∈ J(R). Hence, u(x−crz)(1+w′z)−1+by(1+w′z)−1 = 1, a contradiction.

Thus t(R/aR) + b(R/aR) 6= R/aR, and so the result is proved. �

Lemma 3.2. A ring R is an elementary divisor ring if and only if

(1) R is a Hermite ring;
(2) Every matrix ( a 0

b c ) with aR+bR+cR = R admits elementary diagonal

reduction.

Proof. One easily checks that ( 1
1 ) ( a 0

b c ) (
1

1 ) = ( c b
0 a ) . Therefore the result

follows, by [6, Theorem 1.1] and [8, Theorem 2.5]. �

Lemma 3.3. If (b + ar)R + cR = R with a, b, c, r ∈ R, then ( a b
0 c ) with aR +

bR+ cR = R admits elementary diagonal reduction.

Proof. Let A = ( a b
0 c ). Since (b + ar)R + cR = R, we have B := A ( 1 r

0 1 ) =(
a b+ar
0 c

)
. It suffices to prove B admits a diagonal reduction. Write (b+ar)x+

cy = 1 for some x, y ∈ R. Then the matrix
( x y
−c b+ar

)
is invertible, and we see

that (
x y
−c b+ ar

)
B

(
1

−ax 1

)(
1

1

)
=

(
1 0
0 −ac

)
,

as desired. �

Theorem 3.4. Let R be a Zabavsky ring. Then R is an elementary divisor

ring if and only if R is a Bézout ring.

Proof. (=⇒) This is obvious.
(⇐=) Step I. Suppose that aR + bR + cR = R with a, b, c ∈ R. Write

ax + by + cz = 1 with x, y, z ∈ R. By hypothesis, there exist k ∈ R such that
w := a + byk + czk ∈ R is feckly adequate. In view of Lemma 3.1, R/wR is
nearly adequate. It follows by Theorem 2.5 that R/wR/J(R/wR) is regular,
and so it has stable range 1. We infer that R/wR has stable range 1. Clearly,

(a+byk+czk)x+by(1−kx)+cz(1−kx) = 1. Thus, by(1− kx) + cz(1− kx) = 1

in R/wR. Thus, we can find h ∈ R such that b+ cz(1− kx)h ∈ U(R/wR). It
follows that

(
b + cz(1− kx)h

)
R +

(
a+ byk + czk

)
R = R. Hence,

(
b+ cz(1− kx)h

)
R+

(
a+ (b + cz(1− kx)h)yk + czk(1− (1− kx)hy)

)
R = R.
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Therefore,
(
b + cz(1− kx)h

)
R +

(
a+ czk(1− (1 − kx)hy)

)
R = R.

Thus, R has stable range 2. According to [9, Theorem 2.1.2], R is a Hermite
ring.

Step II. Let A =
(
a′ 0
b′ c′

)
with a′R + b′R + c′R = R. Then there exist

x, y, z ∈ R such that a′x + b′y + c′z = 1. Since R is a Zabavsky ring, we can
find some s ∈ R such that w := b′ + a′xs+ c′zs ∈ R is feckly adequate. Hence,

(
1 0
xs 1

)
A

(
1 0
zs 1

)
=

(
a′ 0
w c′

)
.

Since R is a Hermite ring, there exists some Q = (qij) ∈ GL2(R) such that

(w, c′)Q = (0, c) for a c ∈ R. This implies that
(
a′ 0
w c′

)
Q = ( a b

0 c ). Clearly,
wR ⊆ cR. Additionally, we see that aR+ bR+ cR = R. Since w ∈ R is feckly
adequate, R/wR is nearly adequate by Lemma 3.1. In view of Theorem 2.5,
(R/wR)/J(R/wR) is regular. For any α ∈ R/wR, we can find some β ∈ R such
that

(
α−αβα

)
+wR ∈ J(R/wR). It follows that

(
α−αβα

)
+ cR ∈ J(R/cR).

Thus, (R/cR)/J(R/cR) is regular; hence, (R/cR)/J(R/cR) has stable range
1. This implies that R/cR has stable range 1.

Clearly, a(R/cR)+b(R/cR) = R/cR. Then we can find some r ∈ R such that

b+ ar ∈ R/cR is invertible. Hence, (b+ ar)d = 1, and then (b+ ar)d+ cp = 1
for some p ∈ R. Therefore (b + ar)R + cR = R. In light of Lemma 3.3, ( a b

0 c )
admits elementary diagonal reduction, and therefore so does A, as asserted. �

Corollary 3.5. Let R be a Bézout ring. If every a 6∈ J(R) is feckly adequate,

then R is an elementary divisor ring.

Proof. Suppose that pR+ qR = R with p, q ∈ R. If p ∈ J(R), then q ∈ U(R).
Hence, p + q ∈ U(R), and so p + q ∈ R is feckly adequate. If p 6∈ J(R), then
p+ q · 0 ∈ R is feckly adequate. Therefore R is a Zabavsky ring, and then we
obtain the result, by Theorem 3.4. �

As an immediate consequence of Corollary 3.5, we conclude that every
Bézout ring in which every nonzero element is feckly adequate is an elementary
divisor ring. This generalizes [12, Theorem 7] as well.

Example 3.6. Let R = {a+ bx | a ∈ Z, b ∈ Q, x2 = 0}. Then R is a Bézout
ring in which every a 6∈ J(R) is feckly adequate.

Proof. Let J = (a1 + b1x)R + (a2 + b2x)R. Set I = {α ∈ Z | α + βx ∈ J for
some β ∈ Q}. Since Z is a principal ideal domain, we have some p ∈ Z and
q ∈ Q such that a1Z+ a2Z = pZ and b1Z+ b2Z = qZ. If I 6= 0, then J = pR.
If I = 0, then J = (qx)R. Thus, R is a Bézout ring. Clearly, J(R) = xQ.
Let f(x) = y + bx 6∈ J(R), and let h(x) = z + cx ∈ R. Then y 6= 0. Since
Z is a principal ideal domain, it is adequate. Thus, there exist s, t ∈ R such
that y = st, (s, z) = 1, and that (t′, z) 6= 1 for any non-unit divisor t′ of t. If
(s, t) 6= 1, then we have a nonunit d ∈ R such that (s, t) = d. Hence, (d, z) 6= 1,
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and then (s, z) 6= 1, an absurdity. Therefore (s, t) = 1, and so we can find some
e, d ∈ R such that se+ dt = b. One easily checks that f(x) =

(
s+ dx)

(
t+ ex).

Set s(x) = s+dx and t(x) = t+ex. Then f(x) = s(x)t(x). Clearly, we can find
some k, l ∈ Z such that ks+ lz = 1. Hence, 1−

(
ks(x) + lh(x)

)
∈ J(R). Thus,

ks(x) + lh(x) ∈ U(R). This shows that
(
s(x), h(x)) = 1. If t′(x) = m + fx

is a nonunit divisor of t(x), then m is a nonunit divisor of t. By hypothesis,
(m, z) 6= 1. This implies that

(
t′(x), h(x)

)
6= 1. Thus, f(x) ∈ R is adequate,

and so f(x) is feckly adequate. In this case, R is not nearly adequate. �

Following Domsha and Vasiunyk, a ring R has adequate range 1 provided
that aR + bR = R implies that there exists a y ∈ R such that a + by ∈ R is
adequate ([4]). For instance, every VNL ring (i.e., for any a ∈ R, either a or
1− a is regular) has adequate range 1 ([4, Theorem 11 and Theorem 12]). We
now extend [4, Theorem 14] to Bézout rings (maybe with zero divisors).

Corollary 3.7. If R has adequate range 1, then R is an elementary divisor

ring if and only if R is a Bézout ring.

Proof. As every adequate element in a ring is feckly adequate, if R has adequate
range 1, then it is a Zabavsky ring. Therefore we complete the proof, by
Theorem 3.4. �

Acknowledgements. The authors are grateful to the referee for his/her help-
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