• Title/Summary/Keyword: dynamic stiffness method

Search Result 971, Processing Time 0.029 seconds

Vibration Analysis for IHTS Piping System of LMR Conveying Hot Liquid Sodium (고온소듐 내부유동을 갖는 액체금속로 중간열전달계통 배관에 대한 진동특성 해석)

  • Koo, Gyeong-Hoi;Lee, Hyeong-Yeon;Lee, Jae-Han
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.386-391
    • /
    • 2001
  • In this paper, the vibration characteristics of IHTS(Intermediate Heat Transfer System) piping system of LMR(Liquid Metal Reactor) conveying hot liquid sodium are investigated to eliminate the pipe supports for economic reasons. To do this, a 3-dimensional straight pipe element and a curved pipe element conveying fluid are formulated using the dynamic stiffness method of the wave approach and coded to be applied to any complex piping system. Using this method, the dynamic characteristics including the natural frequency, the frequency response functions, and the dynamic instability due to the pipe internal flow velocity are analyzed. As one of the design parameters, the vibration energy flow is also analyzed to investigate the disturbance transmission paths for the resonant excitation and the non-resonant excitations.

  • PDF

A dynamic finite element method for the estimation of cable tension

  • Huang, Yonghui;Gan, Quan;Huang, Shiping;Wang, Ronghui
    • Structural Engineering and Mechanics
    • /
    • v.68 no.4
    • /
    • pp.399-408
    • /
    • 2018
  • Cable supported structures have been widely used in civil engineering. Cable tension estimation has great importance in cable supported structures' analysis, ranging from design to construction and from inspection to maintenance. Even though the Bernoulli-Euler beam element is commonly used in the traditional finite element method for calculation of frequency and cable tension estimation, many elements must be meshed to achieve accurate results, leading to expensive computation. To improve the accuracy and efficiency, a dynamic finite element method for estimation of cable tension is proposed. In this method, following the dynamic stiffness matrix method, frequency-dependent shape functions are adopted to derive the stiffness and mass matrices of an exact beam element that can be used for natural frequency calculation and cable tension estimation. An iterative algorithm is used for the exact beam element to determine both the exact natural frequencies and the cable tension. Illustrative examples show that, compared with the cable tension estimation method using the conventional beam element, the proposed method has a distinct advantage regarding the accuracy and the computational time.

Dynamic Stiffness and Frequency Response Analysis for the Development of Magnesium Oil Pans (마그네슘 합금 오일팬 개발을 위한 동적 강성 및 주파수 응답 해석)

  • Shin, Hyun-Woo;Chung, Yeon-Jun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.2
    • /
    • pp.141-149
    • /
    • 2009
  • The oil pan is an important factor for the noise behavior of the engine system. In this paper a new Magnesium oil pan was designed and analyzed to replace the current Aluminium oil pan. Dynamic stiffness and sound pressure level of the newly designed Mg oil pan were compared with the AI oil pan using the finite element method. NVH characteristics of the Mg oil pan is slightly insufficient when we changed the material of the oil pan from Al to Mg without modifying the design. Some design modifications of the Mg oil pan resulted in equal or superior characteristics compared to the Al oil pan. New ribs were added to stiffen the structure of the Mg oil pan. Thickness of thin plate area was increased to reduce the radiated noise. Through the changes of shape, higher dynamic stiffness than the current Al oil pan were achieved. Results of frequency response analysis show that we can reduce the sound pressure level of the oil pan if we increase the thickness of the thin plate area. It is shown that the new Mg oil pan could reduce the weight of the engine system and improve NVH quality of an automobile.

Exact natural frequencies of structures consisting of two-part beam-mass systems

  • Su, H.;Banerjee, J.R.
    • Structural Engineering and Mechanics
    • /
    • v.19 no.5
    • /
    • pp.551-566
    • /
    • 2005
  • Using two different, but related approaches, an exact dynamic stiffness matrix for a two-part beam-mass system is developed from the free vibration theory of a Bernoulli-Euler beam. The first approach is based on matrix transformation while the second one is a direct approach in which the kinematical conditions at the interfaces of the two-part beam-mass system are satisfied. Both procedures allow an exact free vibration analysis of structures such as a plane or a space frame, consisting of one or more two-part beam-mass systems. The two-part beam-mass system described in this paper is essentially a structural member consisting of two different beam segments between which there is a rigid mass element that may have rotatory inertia. Numerical checks to show that the two methods generate identical dynamic stiffness matrices were performed for a wide range of frequency values. Once the dynamic stiffness matrix is obtained using any of the two methods, the Wittrick-Williams algorithm is applied to compute the natural frequencies of some frameworks consisting of two-part beam-mass systems. Numerical results are discussed and the paper concludes with some remarks.

Dynamic Response of a Beam with a Spring Support Subject to a Moving Mass (탄성스프링 지지를 갖고 이동질량을 받는 보의 동적응답)

  • Lee, J.W.;Ryu, B.J.;Lee, G.S.;Song, O.S.;Lee, Y.L.
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.868-873
    • /
    • 2003
  • This paper deals with the linear dynamic response of an elastically restrained beam under a moving mass, where the elastic support was modelled by translational springs of variable stiffness. Governing equations of motion taking into account of all inertia effects of the moving mass were derived by Galerkin's mode summation method, and Runge-Kutta integration method was applied to solve the differential equations. The effects of the speed, the magnitude of the moving mass, stiffness and the position of the support springs on the response of the beam have been studied. A variety of numerical results allows us to draw important conclusions for structural design purposes.

  • PDF

The Rocking Response of Rectangular Fluid Storage Tank (구형 유체 저장 Tank의 Rocking응답)

  • 김재관
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.04a
    • /
    • pp.107-114
    • /
    • 1997
  • A dynamic fluid-structure-soil interaction analysis method is developed to investigate the effects of rocking motion on the seismic response of the 3-D flexible rectangular liquid storage tanks founded on the deformable ground. The governing equation of 3-D rectangular tanks subjected to the translational and rocking motions is obtained by Rayleigh-Ritz method. The dynamic stiffness matrix of the rigid surface foundation resting on the surface of a stratum are calculated by hyperelement method. The seismic responses of a 3-D flexible tank model founded on the deformable ground is calculated by combining the governing equation of the structural motion with the dynamic stiffness matrix of the rigid surface foundation.

  • PDF

Derivation of Exact Dynamic Stiffness Matrix of a Beam-Column Element on Elastic Foundation (균일하게 탄성지지된 보-기둥요소의 엄밀한 동적강성행렬 유도)

  • 김문영;윤희택;곽태영
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.3
    • /
    • pp.463-469
    • /
    • 2002
  • The governing equation and force-displacement rotations of a beam-column element on elastic foundation we derived based on variational approach of total potential energy. An exact static and dynamic 4×4 element stiffness matrix of the beam-column element is established via a generalized lineal-eigenvalue problem by introducing 4 displacement parameters and a system of linear algebraic equations with complex matrices. The structure stiffness matrix is established by the conventional direct stiffness method. In addition the F. E. procedure is presented by using Hermitian polynomials as shape function and evaluating the corresponding elastic and geometric stiffness and the mass matrix. In order to verify the efficiency and accuracy of the beam-column element using exact dynamic stiffness matrix, buckling loads and natural frequencies are calculated for the continuous beam structures and the results are compared with F E. solutions.

Comparison Between the Dynamic Properties and Noise Isolation Performances for a Floor Impact Isolation Pad (바닥충격음 완충재의 동적특성과 소음저감 성능 비교)

  • Yang, Soo-Young;Lee, Dong-Hoon;Hong, Boung-Kuk;Song, Hwa-Young;Lee, Joo-Wone
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.275-278
    • /
    • 2005
  • In this study, the dynamic properties of a floor impact sound isolation pad expressed in terms of the natural frequency, the dynamic stiffness per unit area and the loss factor are measured by the resonant method. By using the measured dynamic properties, the vibration transmissibility diagram is obtained for each isolation pad, which is compared with the values tested by the impact sound sources at the room in an apartment. From the comparative results, it is found that the noise reduction Performances. of isolation pads are closely connected with the natural frequency and the dynamic stiffness per unit area.

  • PDF

Dynamic Analysis of Boom Using Finite Element Method (유한 요소법을 이용한 붐대의 동특성 해석)

  • Han, Su-Hyun;Kim, Byung-Jin;Hong, Dong-Pyo;Tae, Sin-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.987-991
    • /
    • 2005
  • The Aerial platform Truck is widely used for work in high place with the aerial platform. The most important thing is that worker's safety and worker must be able to work with trustworthiness so it needs to be verified its stiffness, deflection of boom, and dynamic condition concerned with a rollover accident. It should have an analytical exactitude because it is directly linked with the worker safety. In this point, we are trying to develop a proper CAE analysis model concerned with a rollover safety, bending stress and deflection for load. The Aerial platform Truck have a dynamic characteristics by load and moving of boom in the work field, so its static and dynamic strength analysis, structural mechanics are very important. Therefore, we evaluate the safety of each boom to calculating its stress, deflection. A computer simulation program is used widely for doing applying calculation of stiffness and structural mechanics, then finally trying to find a optimum design of the Aerial platform Truck.

  • PDF

Consideration of Static-strain-dependent Dynamic Complex Modulus in Dynamic Stiffness Calculation of Viscoelastic Mount/Bushing by Commercial Finite Element Codes (점탄성 제진 요소의 복소동강성계수 산출을 위한 상용유한요소 코드 이용시 복소탄성계수의 정하중 의존성 반영 방법)

  • Kim, Kwang-Joon;Shin, Yun-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.4 s.109
    • /
    • pp.372-379
    • /
    • 2006
  • Little attention has been paid to static-strain-dependence of dynamic complex modulus of viscolelastic materials in computational analysisso far. Current commercial Finite Element Method (FEM) codes do not take such characteristics into consideration in constitutive equations of viscoelastic materials. Recent experimental observations that static-strain-dependence of dynamic complex modulus of viscolelastic materials, especially filled rubbers, are significant, however, require that solutions somehow are necessary. In this study, a simple technique of using a commercial FEM code, ABAQUS, is introduced, which seems to be far more cost/time saving than development of a new software with such capabilities. A static-strain-dependent correction factor is used to reflect the influence of static-strains in Merman model, which is currently the base of the ABAQUS. The proposed technique is applied to viscoelastic components of rather complicated shape to predict the dynamic stiffness under static-strain and the predictions are compared with experimental results.