• 제목/요약/키워드: dynamic mechanical

검색결과 5,408건 처리시간 0.027초

Vehicle Dynamic Simulation Including an Artificial Neural Network Bushing Model

  • Sohn, Jeong-Hyun;Baek-Woon-Kyung
    • Journal of Mechanical Science and Technology
    • /
    • 제19권spc1호
    • /
    • pp.255-264
    • /
    • 2005
  • In this paper, a practical bushing model is proposed to improve the accuracy of the vehicle dynamic analysis. The results of the rubber bushing are used to develop an empirical bushing model with an artificial neural network. A back propagation algorithm is used to obtain the weighting factor of the neural network. Since the output for a dynamic system depends on the histories of inputs and outputs, Narendra algorithm of 'NARMAX' form is employed to consider these effects. A numerical example is carried out to verify the developed bushing model. Then, a full car dynamic model with artificial neural network bushings is simulated to show the feasibility of the proposed bushing model.

Dynamic Analysis of a Geometrical Non-Linear Plate Using the Continuous-Time System Identification

  • Lim, Jae-Hoon;Choi, Yeon-Sun
    • Journal of Mechanical Science and Technology
    • /
    • 제20권11호
    • /
    • pp.1813-1822
    • /
    • 2006
  • The dynamic analysis of a plate with non-linearity due to large deformation was investigated in this study. There have been many theoretical and numerical analyses of the non-linear dynamic behavior of plates examining theoretically or numerically. The problem is how correctly an analytical model can represent the dynamic characteristics of the actual system. To address the issue, the continuous-time system identification technique was used to generate non-linear models, for stiffness and damping terms, and to explain the observed behaviors with single mode assumption after comparing experimental results with the numerical results of a linear plate model.

A New Penalty Parameter Update Rule in the Augmented Lagrange Multiplier Method for Dynamic Response Optimization

  • Kim, Min-Soo;Choi, Dong-Hoon
    • Journal of Mechanical Science and Technology
    • /
    • 제14권10호
    • /
    • pp.1122-1130
    • /
    • 2000
  • Based on the value of the Lagrange multiplier and the degree of constraint activeness, a new update rule is proposed for penalty parameters of the ALM method. The theoretical exposition of this suggested update rule is presented by using the algorithmic interpretation and the geometric interpretation of the augmented Lagrangian. This interpretation shows that the penalty parameters can effect the performance of the ALM method. Also, it offers a lower limit on the penalty parameters that makes the augmented Lagrangian to be bounded. This lower limit forms the backbone of the proposed update rule. To investigate the numerical performance of the update rule, it is embedded in our ALM based dynamic response optimizer, and the optimizer is applied to solve six typical dynamic response optimization problems. Our optimization results are compared with those obtained by employing three conventional update rules used in the literature, which shows that the suggested update rule is more efficient and more stable than the conventional ones.

  • PDF

방사선 열화에 따른 PEEK의 유전특성과 동적 기계적 특성 (Dielectric Analysis and Dynamic Mechanical Analysis of Radiation Degradation of PEEK)

  • 김기엽;강현구;류부형;이청;임기조
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 하계학술대회 논문집 Vol.4 No.1
    • /
    • pp.485-488
    • /
    • 2003
  • Radiation degradation of Poly(ether ether ketone) (PEEK) has been studied by dielectric analysis and dynamic mechanical analysis. It has been observed that dielectric properties are influenced by radiation degradation of PEEK. For radiation degradation of PEEK, dynamic mechanical properties were insensible.

  • PDF

군집을 모사한 입자-격자 구조의 난류 내 동적 안정성 (Dynamic Stability of Particle-Lattice Structures Simulating Swarms in Turbulence)

  • 오정석;윤성근;박한준;황원태
    • 한국가시화정보학회지
    • /
    • 제17권3호
    • /
    • pp.32-38
    • /
    • 2019
  • The dynamic stability of swarms is crucial in preventing collisions in clustered flights and safely moving along a defined path. Although there have been many simulation studies on dynamic stability, there have not been many experimental studies using real clusters due to the difficulty in implementation. In this study, we constructed a particle-lattice structure simulating bird flocks or drone swarms, and conducted experiments within turbulent flow. We identified a criterion that describes dynamically stable particle-lattice structures. The stability increased as this newly defined spatial index increased.

쌍동형 무인선의 동적위치제어에 관한 연구 (Dynamic Positioning Control of a Twin-hull Unmanned Surface Ship)

  • 강민주;김태윤;김진환
    • 로봇학회논문지
    • /
    • 제11권4호
    • /
    • pp.217-225
    • /
    • 2016
  • Dynamic Positioning (DP) is used to automatically maintain the position and heading of a floating structure subjected to environmental disturbances. A DP control system is composed of a motion controller to compute the desired force and moment and a thrust allocator to distribute the computed force and moment to multiple thrusters considering mechanical and operational constraints. Among various thruster configurations, azimuth thrusters or propeller/rudder pairs tend to make the allocation problem difficult to solve, because these types of propulsion systems include nonlinear constraints. In this paper, a dynamic positioning strategy for a twin-thruster ship that is propelled by two azimuthing thrusters is addressed, and a thrust allocation method which does not require a numerical optimization solver is proposed. The applicability of the proposed method is demonstrated with an experiment using an autonomous boat.

DEVELOPMENT OF DCT VEHICLE PERFORMANCE SIMULATOR TO EVALUATE SHIFT FORCE AND TORQUE INTERRUPTION

  • Park, S.J.;Ryu, W.S.;Song, J.G.;Kim, H.S.;Hwang, S.H.
    • International Journal of Automotive Technology
    • /
    • 제7권2호
    • /
    • pp.161-166
    • /
    • 2006
  • This paper presents shift characteristics of a dual clutch transmission(DCT). To obtain the shift force, dynamic models of the DCT are constructed by using MATLAB/Simulink and considering the rotational inertia of every component and the target pre-select time. Dynamic models of the shift and clutch actuators are derived based on the experimental results of the dynamic characteristics test. Based on the dynamic model of the DCT synchronizer, control actuator and vehicle model, a DCT vehicle performance simulator is developed. Using the simulator, the shift force and speed of the relevant shafts are obtained. In addition, the torque and acceleration of actuators are calculated during the shift process by considering the engaging and disengaging dynamics of the two clutches. It is observed from the performance simulator that uninterrupted torque can be transmitted by proper control of the two clutches.

직교 이방성체의 동적 응력확대계수에 관한 연구(I) (A Study on the Dynamic Stress Intensity Factor of Orthotropic Materials(I))

  • 이광호;황재석;최선호
    • 대한기계학회논문집
    • /
    • 제17권2호
    • /
    • pp.313-330
    • /
    • 1993
  • The propagating crack problems under dynamic plane mode in orthotropic material is studied in this paper. To analyze the dynamic fracture problems in orthortropic material, it is important to know the dynamic stress components and dynamic displacement components around the crack tip. Therefore the dynamic stress components of dynamic stress field and dynamic displacement components of dynamic displacement field in the crack tip of orthotropic material under the dynamic load and the steady state in crack propagation were derived. When the crack propagation speed approachs to zero, the dynamic stress component and dynamic displacement components derived in this study are identical to the those of static state. In addition, the relationships between dynamic stress intensity factor and dynamic energy release rate are determinded by using the concept of crack closure closure energy with the dynamic stresses and represented according to physical properties of the orthotrophic material and crack speeds. The faster the crack velocity, the greater the stress value of stress components in crack tip. The stress value of the stress component of crack tip is greater when fiber direction coincides with the crack propagation than when fider direction is normal to the crack propagation.

Dynamic Stability of a Cantilevered Timoshenko Beam on Partial Elastic Foundations Subjected to a Follower Force

  • Ryu, Bong-Jo;Shin, Kwang-Bok;Yim, Kyung-Bin;Yoon, Young-Sik
    • Journal of Mechanical Science and Technology
    • /
    • 제20권9호
    • /
    • pp.1355-1360
    • /
    • 2006
  • This paper presents the dynamic stability of a cantilevered Timoshenko beam with a concentrated mass, partially attached to elastic foundations, and subjected to a follower force. Governing equations are derived from the extended Hamilton's principle, and FEM is applied to solve the discretized equation. The influence of some parameters such as the elastic foundation parameter, the positions of partial elastic foundations, shear deformations, the rotary inertia of the beam, and the mass and the rotary inertia of the concentrated mass on the critical flutter load is investigated. Finally, the optimal attachment ratio of partial elastic foundation that maximizes the critical flutter load is presented.

Dynamic Analysis of Multi-body Systems Considering Probabilistic Properties

  • Choi, Dong-Hwan;Lee, Se-Jeong;Yoo, Hong-Hee
    • Journal of Mechanical Science and Technology
    • /
    • 제19권spc1호
    • /
    • pp.350-356
    • /
    • 2005
  • A method of dynamic analysis of mechanical systems considering probabilistic properties is proposed in this paper. Probabilistic properties that result from manufacturing tolerances can be represented by means and standard deviations (or variances). The probabilistic characteristics of dynamic responses of constrained multi-body systems are obtained by two ways : the proposed analytical approach and the Monte Carlo simulation. The formerpaper, necessitates sensitivity information to calculate the standard deviations. In this a direct differentiation method is employed to find the sensitivities of constrained multi-body systems. To verify the accuracy of the proposed method, numerical examples are solved and the results obtained by using the proposed method are compared to those obtained by Monte Carlo simulation.