• Title/Summary/Keyword: dynamic graph model

Search Result 85, Processing Time 0.034 seconds

A Query Model for Consecutive Analyses of Dynamic Multivariate Graphs (동적 다변량 그래프의 연속적 분석을 위한 질의 모델 설계 및 구현)

  • Bae, Yechan;Ham, Doyoung;Kim, Taeyang;Jeong, Hayjin;Kim, Dongyoon
    • The Journal of Korean Association of Computer Education
    • /
    • v.17 no.6
    • /
    • pp.103-113
    • /
    • 2014
  • This study designed and implemented a query model for consecutive analyses of dynamic multivariate graph data. First, the query model consists of two procedures; setting the discriminant function, and determining an alteration method. Second, the query model was implemented as a query system that consists of a query panel, a graph visualization panel, and a property panel. A Node-Link Diagram and the Force-Directed Graph Drawing algorithm were used for the visualization of the graph. The results of the queries are visually presented through the graph visualization panel. Finally, this study used the data of worldwide import & export data of small arms to verify our model. The significance of this research is in the fact that, through the model which is able to conduct consecutive analyses on dynamic graph data, it helps overcome the limitations of previous models which can only perform discrete analysis on dynamic data. This research is expected to contribute to future studies such as online decision making and complex network analysis, that use dynamic graph models.

  • PDF

Bond Gragh Prototypes: A General Model for Dynamic Systems in Terms of Bond Graphs (표준본드선도: 본드선도에 의한 동적시스템의 일반모델)

  • Park, Jeon-Soo;Kim, Jong-Shik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.9
    • /
    • pp.1414-1421
    • /
    • 1997
  • This paper examines the physics and mechanics governing the dynamic interaction between physical systems and suggests the four structures of bond graph prototypes, considered as a general model that can promise their dynamic behavior physically resonable. The bond graph prototypes originating from the paper are more realistic junction structures than those used to model dynamic systems conventionally by bond graph standards in whether physical constraints are involved or not when the energy exchange between two dynamic components arises. It is shown that the bond graph prototypes are dynamic or energetic in their describing equations compared to the bond graph standards, and connectivity and causality are properties of dynamic systems upon which the steps developed in this paper for the bond graph prototypes are wholly based and their definitions an concepts are highly emphasized all through the paper.

A Hierarchical Graph Structure and Operations for Real-time A* Path finding and Dynamic Graph Problem (실시간 A* 길 찾기와 동적 그래프 문제를 위한 계층적 그래프 구조와 연산자)

  • Kim, Tae-Won;Cho, Kyung-Eun;Um, Ky-Hyun
    • Journal of Korea Game Society
    • /
    • v.4 no.3
    • /
    • pp.55-64
    • /
    • 2004
  • A dynamic graph is suitable for representing and managing dynamic changable obstacles or terrain information in 2D/3D games such as RPG and Strategy Simulation Games. We propose a dynamic hierarchical graph model with fixed level to perform a quick A* path finding. We divide a graph into subgraphs by using space classification and space model, and construct a hierarchical graph. And then we perform a quick path fading on the graph by using our dynamic graph operators. With our experiments we show that this graph model has efficient properties for finding path in a dynamic game environment.

  • PDF

An efficient seismic analysis of regular skeletal structures via graph product rules and canonical forms

  • Kaveh, A.;Zakian, P.
    • Earthquakes and Structures
    • /
    • v.10 no.1
    • /
    • pp.25-51
    • /
    • 2016
  • In this study, graph product rules are applied to the dynamic analysis of regular skeletal structures. Graph product rules have recently been utilized in structural mechanics as a powerful tool for eigensolution of symmetric and regular skeletal structures. A structure is called regular if its model is a graph product. In the first part of this paper, the formulation of time history dynamic analysis of regular structures under seismic excitation is derived using graph product rules. This formulation can generally be utilized for efficient linear elastic dynamic analysis using vibration modes. The second part comprises of random vibration analysis of regular skeletal structures via canonical forms and closed-form eigensolution of matrices containing special patterns for symmetric structures. In this part, the formulations are developed for dynamic analysis of structures subjected to random seismic excitation in frequency domain. In all the proposed methods, eigensolution of the problems is achieved with less computational effort due to incorporating graph product rules and canonical forms for symmetric and cyclically symmetric structures.

An Attack Graph Model for Dynamic Network Environment (동적 네트워크 환경에 적용 가능한 Attack Graph 모델 연구)

  • Moon, Joo Yeon;Kim, Taekyu;Kim, Insung;Kim, Huy Kang
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.28 no.2
    • /
    • pp.485-500
    • /
    • 2018
  • As the size of the system and network environment grows and the network structure and the system configuration change frequently, network administrators have difficulty managing the status manually and identifying real-time changes. In this paper, we suggest a system that scans dynamic network information in real time, scores vulnerability of network devices, generates all potential attack paths, and visualizes them using attack graph. We implemented the proposed algorithm based attack graph; and we demonstrated that it can be applicable in MTD concept based defense system by simulating on dynamic virtual network environment with SDN.

Direct synthesis method of dynamic systems in terms of bond graphs (본드선도를 이용한 동적시스템의 직접 종합방법)

  • Park, Jeon-Soo;Kim, Jong-Shik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.2
    • /
    • pp.399-407
    • /
    • 1998
  • This paper deals with a method for finding the physical structure of dynamic systems which shows reasonable response to a given specifiation. The method uses only four basic models of bond graph prototypes which have been originally proposed by the authors as a general model for dynamic systems, and then makes its procedure highly physical in the sense that it can synthesize a dynamic system through the structural transformation directly on bond graph models without any mathematical manipulation. Also, it is shown that this method has further advantages in optimizing parameters for an existing system rather than developing design concepts for a new device, the latter being more suitable using the so-called analytical synthesis method introduced by Park and Redfield. One example serves to trace the outlines of the direct synthesis method proposed in this paper for dynamic systems in terms of bond graph prototypes.

Dynamic Task Assignment Using A Quasi-Dual Graph Model (의사 쌍대 그래프 모델을 이용한 동적 태스크 할당 방법)

  • 김덕수;박용진
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.20 no.6
    • /
    • pp.62-68
    • /
    • 1983
  • We suggest a Quasi- dual graph model in consideration of dynamic module assignment and relocation to assign task optimally to two processors that have different processing abilities. An optimal module partitioning and allocation to minimize total processing cost can be achieved by applying shortest-path algorithm with time complexity 0(n2) on this graph model.

  • PDF

Evaluation of availability of nuclear power plant dynamic systems using extended dynamic reliability graph with general gates (DRGGG)

  • Lee, Eun Chan;Shin, Seung Ki;Seong, Poong Hyun
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.444-452
    • /
    • 2019
  • To assess the availability of a nuclear power plant's dynamic systems, it is necessary to consider the impact of dynamic interactions, such as components, software, and operating processes. However, there is currently no simple, easy-to-use tool for assessing the availability of these dynamic systems. The existing method, such as Markov chains, derives an accurate solution but has difficulty in modeling the system. When using conventional fault trees, the reliability of a system with dynamic characteristics cannot be evaluated accurately because the fault trees consider reliability of a specific operating configuration of the system. The dynamic reliability graph with general gates (DRGGG) allows an intuitive modeling similar to the actual system configuration, which can reduce the human errors that can occur during modeling of the target system. However, because the current DRGGG is able to evaluate the dynamic system in terms of only reliability without repair, a new evaluation method that can calculate the availability of the dynamic system with repair is proposed through this study. The proposed method extends the DRGGG by adding the repair condition to the dynamic gates. As a result of comparing the proposed method with Markov chains regarding a simple verification model, it is confirmed that the quantified value converges to the solution.

Shared Spatio-temporal Attention Convolution Optimization Network for Traffic Prediction

  • Pengcheng, Li;Changjiu, Ke;Hongyu, Tu;Houbing, Zhang;Xu, Zhang
    • Journal of Information Processing Systems
    • /
    • v.19 no.1
    • /
    • pp.130-138
    • /
    • 2023
  • The traffic flow in an urban area is affected by the date, weather, and regional traffic flow. The existing methods are weak to model the dynamic road network features, which results in inadequate long-term prediction performance. To solve the problems regarding insufficient capacity for dynamic modeling of road network structures and insufficient mining of dynamic spatio-temporal features. In this study, we propose a novel traffic flow prediction framework called shared spatio-temporal attention convolution optimization network (SSTACON). The shared spatio-temporal attention convolution layer shares a spatio-temporal attention structure, that is designed to extract dynamic spatio-temporal features from historical traffic conditions. Subsequently, the graph optimization module is used to model the dynamic road network structure. The experimental evaluation conducted on two datasets shows that the proposed method outperforms state-of-the-art methods at all time intervals.

Dynamically-Correct Automatic Transmission Modeling (동적 특성을 고려한 자동변속기의 모델링)

  • 김정호;조동일
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.5
    • /
    • pp.73-85
    • /
    • 1997
  • An automatic transmission is an important element of automotive power systems that allows a driving convenience. Compared to a manual transmission, however, it has a few problems in efficiency, shift feel, and maintenance. To improve these, it is imperative to understand the dynamics of automatic transmissions. This paper develops a dynamically-correct model of an automatic transmission, using the bond graph method. The bond graph method is ideally suited for modeling power systems, because the method is based on generalized power variables. The bond graph method is capable of providing correct dynamic constraints and kinematic constraints, as well as the governing differential equations of motion. The bond graph method is applied to 1-4 in-gear ranges, as well as various upshifts and downshifts of an automatic transmission, which allows an accurate simulation of an automatic transmission. Conventional automatic transmission models have no dynamic constraint, which do not allow correct simulation studies.

  • PDF