• Title/Summary/Keyword: dynamic equations of motion

Search Result 884, Processing Time 0.024 seconds

A New Dynamic Analysis of 6-3 Stewart Platform Manipulator (6-3 스튜워트 플랫폼 운동장치의 운동방정식 해석)

  • Kim, Nak-In;Lee, Chong-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.11
    • /
    • pp.1820-1828
    • /
    • 2001
  • The dynamics of the 6-3 Stewart platform manipulator (SPM) is newly derived based on the kinematic relations particularly developed fur the SPM. The essence of the analysis is to deal with three subsystems of the SPM, each consisting of the command and feedback line links associated with two joined neighboring actuators. The dynamics of the command and feedback line links are first formulated using Lagrange and Newton-Euler method and then combined to derive the dynamic equations of motion fur the SPM. The derived nonlinear equations of motion are so computationally effective that it can be easily applied to real-time high-speed tracking control of 6-3 SPM.

Spectral Element Analysis of the Pipeline Conveying Internal Flow (스펙트럴요소법을 이용한 내부유동 포함된 파이프 진도해석)

  • 강관호;이우식
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.207-212
    • /
    • 2001
  • This paper considers a pipeline conveying one-dimensional unsteady flow inside. The dynamics of the fluid-pipe system is represented by two coupled equations of motion for the transverse and axial displacements, which are linearized from a set of partial differential equations which consists of the axial and transverse equations of motion of the pipeline and the equations of momentum and continuity of the internal flow. Because of the complex nature of fluid-pipe interactive mechanism, a very accurate solution method is required to get sufficiently accurate dynamic characteristics of the pipeline. In the literatures, the finite element models have been popularly used for the problems. However, it has been well recognized that finite element method (FEM) may provide poor solutions especially at high frequency. Thus, in this paper, a spectral element model is developed for the pipeline and its accuracy is evaluated by comparing with the solutions by FEM.

  • PDF

Dynamic Modeling and Controller Design for Active Vibration Control of Elevator (엘리베이터 능동진동제어를 위한 동적 모델링 및 제어기 설계)

  • Kim, Ki-Young;Kwak, Moon-K.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.71-76
    • /
    • 2008
  • This paper is concerned with the active vibration control of elevator by means of the active roller guide. To this end, a dynamic model for the horizontal vibration of the elevator consisting of a supporting frame, cage and active roller guides was derived using the energy method. Free vibration analysis was then carried out based on the equations of motion. Active vibration controller was designed based on the equations of motion using the LQR theory and applied to the numerical model. Rail irregularity and wind pressure variation were considered as external disturbance in the numerical simulations. The numerical results show that the active vibration control of elevator is possible.

  • PDF

Vibration Analysis of a Deploying and Spinning Beam with a Time-dependent Spinning Speed (시간에 따라 변하는 회전 속도와 함께 회전하며 전개하는 보의 진동 분석)

  • Zhu, Kefei;Chung, Jintai
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.12
    • /
    • pp.874-880
    • /
    • 2015
  • This paper presents the vibration analysis of a deploying beam with spin when the beam has a time-dependent spinning speed. In the previous studies for the deploying beams with spin, the spinning speed was time-independent. However, it is more reasonable to consider the time-dependent spinning speed. The present study introduces the time-dependent spinning speed in the modeling. The Euler-Bernoulli beam theory and von Karman nonlinear strain theory are used together to derive the equations of motion. After the equations of motion are transformed into the weak forms, the weak forms are discretized. The natural frequency and dynamic response are obtained. The effect of the time-dependent spinning speed on the dynamic response is studied.

Dynamic Analysis of a Tilted HDD Spindle System due to Roundness (진원도 오차를 고려한 스핀들 시스템의 동적 특성 해석)

  • Koak, Kyu-Yeol;Jang, Gun-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.840-846
    • /
    • 2007
  • This paper investigates the dynamic behavior of a HDD spindle system due to the imperfect roundness of a rotating shaft. The shaft of a spindle motor rotates with eccentricity by the unbalanced mass of the rotating part. The eccentricity generates the run-out of a spindle motor which results in the eccentric motion of a rotating part. Roundness of a shaft affects this motion which limits the memory capacity of a HDD. This research proposes a modified Reynolds equation for the coupled journal and thrust FDBs to include the variable film thickness due to the roundness. Finite element method is used to solve the Reynolds equation for the pressure distribution. Reaction forces and friction torque are obtained by integrating the pressure and shear stress, respectively. The dynamic behavior is determined by solving the equations of a motion of a HDD spindle system in six degrees of freedom with the Runge-Kutta method to characterize the motion of a rotating part. This research shows that the roundness of a rotating shaft causes the excitation frequency with integer multiple of a rotating frequency.

  • PDF

A Study on 3-D Dynamic Characteristic of Gantry Crane (갠트리 크레인의 3차원 동특성에 관한 연구)

  • 이성섭;이형우;박찬훈;박경택;이만형
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2000.11a
    • /
    • pp.153-158
    • /
    • 2000
  • The sway motion of the spreader during and after movement causes an efficiency problem of position control in unmaned gantry crane. The objective of this research is to investigate the phenomenon that the load is taken by the sway motion of crane. For deriving the dynamic equations related to the swing motion of crane, we introduced a conception of spring and damper in the upper part of the crane. During the crane and trolley is driving along the velocity profile, the swing motion of the spreader and crane will be simulated. The simulation result of the equation of motion using the Runge-Kutta method is presented in this paper. And we will show an effect of the swing of the crane in this research.

  • PDF

The Study of 3-Dimension Dynamic Characteristics of Gantry Crane (갠트리 크레인의 3차원 동특성에 관한 연구)

  • 이성섭;이형우;박찬훈;박경택;이만형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.708-712
    • /
    • 2000
  • The sway motion of the spreader during and after movement causes an efficiency problem of position control in unmaned gantry crane. The objective of this research is to investigate the phenomenon that the load is taken by the sway motion of crane. For deriving the dynamic equations related to the swing motion of crane, we introduced a conception of spring and damper in the upper part of the crane. During the crane and trolley is driving along the velocity profile, the swing motion of the spreader and crane will be simulated. The simulation result of the equation of motion using the Rung-Kutta method is presented in this paper. And we will show an effect of the swing of the crane in this research.

  • PDF

Dynamics of a Micro Three-axis Ring Gyroscope Considering Electrode Effects (전극 효과를 고려한 마이크로 3축 링 자이로스코프의 동역학)

  • 김창부;강태민
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.1
    • /
    • pp.64-72
    • /
    • 2004
  • In this paper. we analyse and present electro-mechanical dynamic characteristics of a micro-machined vibrating silicon ring gyroscope which can measure angular velocities about three orthogonal axes. The ring gyroscope has a ring connected to the gyroscope main body by support-ligaments which are arranged with cyclic symmetry. The natural modes of its vibration can be distinguished into the in-plane motion and the out-of-plane motion which are coupled by the gyro-effect due to the rotation of the gyroscope main body. The motions of the ring are electro-statically derived. sensed and balanced by electrodes. The equations of motion are formulated. The measuring method of angular velocities by force-to-rebalance is presented. The dynamic characteristics of a ring gyroscope are calculated and compared.

Dynamics of a Micro Three-Axis Ring Gyroscope Considering Electrode Effects (전극 효과를 고려한 마이크로 3축 링 자이로스코프의 동역학)

  • 강태민;김창부
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.970-976
    • /
    • 2003
  • In this paper, we analyse and present electro-mechanical dynamic characteristics of a micro-machined vibrating silicon ring gyroscope which can measure angular velocities about three orthogonal axes. The ring gyroscope has a ring connected to the gyroscope main body by support-ligaments which are arranged with cyclic symmetry. The natural modes of its vibration can be distinguished into the in-plane motion and the out-of-plane motion which are coupled by the gyro-effect due to the notation of the gyroscope main body. The motions of the ring are electro-statically derived, sensed and balanced by electrodes. The equations of motion are formulated. The scheme of angular velocities sensing by force-to-rebalance method is presented. The dynamic characteristics of a ring gyroscope are calculated and compared.

  • PDF

Dynamic analysis of a launcher under impulsive forces (충격력을 받는 발사대의 동역학적 해석)

  • 이병훈;유완석;김준호
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.15 no.2
    • /
    • pp.84-91
    • /
    • 1993
  • The dynamic behaviors of a launcher under impulsive forces are analyzed. All the components of the system, ie ; chassis, turret, cage and suspension parts, are modeled as rigid. The dynamic analysis code, which is developed with the formulae describing the system equations of motion in terms of relative quantities, is used to carry out the analysis. The results show the dynamic responses of chassis and cage when the driving constraints are imposed on turret and cage.

  • PDF