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Vibration Analysis of a Deploying and Spinning Beam 
with a Time-dependent Spinning Speed

시간에 따라 변하는 회전 속도와 함께 회전하며 전개하는 보의 진동 분석
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ABSTRACT

This paper presents the vibration analysis of a deploying beam with spin when the beam has a 
time-dependent spinning speed. In the previous studies for the deploying beams with spin, the spin-
ning speed was time-independent. However, it is more reasonable to consider the time-dependent 
spinning speed. The present study introduces the time-dependent spinning speed in the modeling. The 
Euler-Bernoulli beam theory and von Karman nonlinear strain theory are used together to derive the 
equations of motion. After the equations of motion are transformed into the weak forms, the weak 
forms are discretized. The natural frequency and dynamic response are obtained. The effect of the 
time-dependent spinning speed on the dynamic response is studied.

요  약

이 논문은 시간에 따라 변하는 회전 속도와 함께 전개하며 회전하는 보의 진동을 분석하였다. 전개

하며 회전하는 보와 관련된 이전 연구들에서 회전 속도는 시간에 독립적이었다. 하지만, 시간에 따라 

변하는 회전속도로 고려하는 것이 더 적합하다. 현재 연구는 모델링에서 시간에 따라 변하는 회전 속

도를 소개하였다. 운동방정식을 유도하기 위해 오일러-베루누이(Euler-Bernoulli) 보 이론과 본 카르만

(von Karman) 비선형 변형률 이론이 함께 사용되었다. 운동방정식을 약형(weak form)으로 변환한 후, 
약형은 이산화 되었다. 고유 진동수와 시간응답을 얻었고, 시간에 따라 변화하는 회전 속도가 시간응

답에 미치는 영향이 연구되었다.

* 

1. Introduction

The vibration problems for the deploying beams 
and spinning beams are very important because 

these beams are used in various mechanical sys-
tems, such as robot manipulators, deploying ap-
pendages on satellite, drilling machines in 
productions. Numerous reports have been pub-
lished for the vibration analysis of these beams. 
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Some researchers analyzed the vibration of the 
deploying beams without a spinning motion. 
AI-Bedoor and Khuilief(1) derived an approximate 
analytical solution for the transverse vibrations of 
a beam during axial de-ployment. Park et al.(2) an-
alyzed the longitudinal and tra-nsverse vibrations 
of an axially moving beam when the beam has 
deploying or retracting motion. The transverse vi-
bration for the axially moving nested beam with a 
tip mass was studied by Duan et al.(3). Kim and 
Chung(4) presented a residual vibration reduction 
method for a flexible beam deployed from a 
translating hub. 

Other papers were published for the spinning 
beams without deployment. Fung and Lee(5) pre-
sented a para-metric variable structure control for 
the spinning beam. Young and Gau(6) studied the 
dynamic stability of a beam spinning along its ax-
ial axis and subjected to an axial force. Sheu and 
Yang(7) investigated the whirl speed, critical speed 
and mode shape of a spinning beam. A geometric 
nonlinear dynamic model for marine propulsion 
was established by Zou et al.(8). 

Although many papers have been published for 
the vibration analysis of the deploying beams 
without spin as well as the spinning beams with-
out deployment, few papers have been published 
for the vibration of the beam with both deploying 
and spinning motion. Lee(9) analyzed the vibration 
of a pre-twisted beam with deployment. Zhu and 
Chung(10) studied the nonlinear vibration of a de-
ploying beam with spin. In the above previous 
studies for the deploying beams with spin, the 
spinning speeds were time-independent. However, 
in practice, the spinning speed changes with time, 
it is more reasonable that the spinning speed is 
assumed to be time-dependent.  

This study presents the vibration analysis of a 
deploying and spinning beam with a time-depend-
ent spinning speed. The Euler-Bernoulli beam 
theory and the von Karman nonlinear strain theory 
are used together to derive the equation of 

motion. The Galerkin method is used to discretize 
the equations. The natural frequency and dynamic 
response are obtained. The effect of the time-de-
pendent spinning speed on the dynamic response 
is investigated. 

2. Dynamic Modeling

Figure 1 shows the dynamic model of a spinning 
beam deploying from a rigid hub. The beam ax-
ially deploys with the time-dependent moving 
speed V(t), and simultaneously spins along its axial 
axis with the time-dependent spinning speed Ω(t). 
The beam is uniform and it has mass density ρ, 
total length L, circular cross section with area A 
and area moment of inertia I. The length outside 
the hub is l. An external axial force F, which is 
applied at the left end, pushes the beam deploying 
out the hub. 

The position vector can be defined by the axial 
displacement u, the lateral displacements v and w . 
The torsional displacement is not considered in 
this study because there is no coupling between 
torsional and lateral displacements for a spinning 
beam with the doubly symmetric cross section. 
The position vector of the point at a distance x 
away from the hub may be written as.

( )
( )

                   for 0
     for 0

x u  l L x
x u v w  x l

+ − ≤ ≤⎧⎪= ⎨ + + + ≤ ≤⎪⎩

i
r

i j k
(1)

The Euler-Bernoulli beam theory and the von 
Karman nonlinear strain theory are used together 
to model the deploying beam with spin. It is as-
sumed the beam is slender enough, so the rotary 
inertia and shear deformation can be neglected 
and the Euler-Bernoulli beam theory can be 
adopted. On the other hand, the von Karman non-
linear strain theory, which considers the geometric 
nonlinear due to the large deflection, is more ad-
equate than the conventional linear strain theory.   

The equations of motion can be derived by the 
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extended Hamilton's principle. By considering the 
time-dependent spinning speed and using the sim-
ilar derivation procedure presented by the au-
thors(10), the equations of the axial and lateral mo-
tions may be derived and given as

2 2 2 2
2

2 2 22u u u u uA V V V EA AV
t x t x x x

ρ ρ
⎛ ⎞∂ ∂ ∂ ∂ ∂

+ + + − = −⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

(1)

2 2 2 4
2 2

2 2 42v v v v vA V V V v EI
t x t x x x

ρ
⎛ ⎞∂ ∂ ∂ ∂ ∂

+ + + − Ω +⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

   2 2 0w w u vA V w EA
t x x x x

ρ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞− Ω + Ω + Ω − =⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

(2)

2 2 2 4
2 2

2 2 42w w w w wA V V V w EI
t x t x x x

ρ
⎛ ⎞∂ ∂ ∂ ∂ ∂

+ + + −Ω +⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

   2 2 0v v u wA V v EA
t x x x x

ρ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞+ Ω + Ω +Ω − =⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
(3)

The associate boundary conditions are 

atuEA ALV x l L
x

ρ∂
= − = −

∂
(4)

0 atuEA x l
x

∂
= =

∂
(5)

(a)

P′

(b)

Fig. 1 Dynamic model of a deploying beam with 
spin

0 at 0v wv w x
x x

∂ ∂
= = = = =

∂ ∂
(6)

2 3 2 3

2 3 2 3 0 atv v w wEI EI EI EI x l
x x x x

∂ ∂ ∂ ∂
= = = = =

∂ ∂ ∂ ∂
(7)

Note that in the lateral equations of motion, the 
spinning speed is the time function and it in-
troduces the angular acceleration Ω  and two new 
corresponding terms A wρ− Ω  and A vρ Ω . These 
two terms bring about linear coupling effect on 
the lateral equations.

In order to derive the weak form, the trial 
functions and weighting functions are defined. The 
trial functions are defined by u, v and w , while 
the weighting functions are defined by u , v  and 
w . The weak forms, which may be derived by 
multiplying the equations of motion by weighting 
functions and integrating by parts over the do-
main, are given as

2 2

2 2 d
l

l L

u u uA u V V x
t x t x

ρ
−

⎛ ⎞∂ ∂ ∂
+ +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

∫

     2( ) d
l

l L

u uEA AV x
x x

ρ
−

∂ ∂
+ −

∂ ∂∫ (8)
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d 1
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∫

2 2 2
2 2

2 20
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The trail functions for the axial and lateral mo-
tions may be expressed as a series of the basis 
functions, which are given as 

1
( , ) ( ) ( , )

N
u
j j

j
u x t T t U x t

=

= ∑ (11)

1
( , ) ( ) ( , )

N
v

n n
n

v x t T t V x t
=

= ∑ (12)

1
( , ) ( ) ( , )

N
w

q q
q

w x t T t W x t
=

= ∑ (13)

Here N  is number of the basis functions, the ba-
sis functions can be given as

[ ]2( , ) cos ( )j
jU x t x l t L

L L
π

= − + (14)

( )

1 cosh cos

sinh sin sinh sin
cosh cos

n n n n

n n
n n

n n

V W x x
l

l l x x
l l

β β

β β
β β

β β

⎡= = −⎢⎣
⎤−

− − ⎥+ ⎦

(15)

where n xβ  is the nth solution of the frequency 
equation of cosh nβ l cos nβ l +1 = 0.

The discretized equations are obtained by sub-
stituting the trial functions and weighting functions 
into the weak forms. The derived discretized 
equations may be written as in a matrix-vector 
form

u u u u u u u+ + =M T G T K T F (16)

v v vwv v

w wv ww w

⎧ ⎫ ⎧ ⎫⎡ ⎤ ⎡ ⎤
+⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎩ ⎭ ⎩ ⎭

M 0 G GT T
0 M G GT T

v vu vw v

wv w wu w

+⎡ ⎤ ⎧ ⎫ ⎧ ⎫
+ =⎨ ⎬ ⎨ ⎬⎢ ⎥+ ⎩ ⎭⎣ ⎦ ⎩ ⎭

K K K T 0
K K K T 0

(17)

3. Analysis and Discussion

The dynamic responses and natural frequencies 
are obtained based on the above derived matrix 

vector form. Before computation of the dynamic 
responses, the convergence tests should be 
performed. According to the results given by Zhu 
and Chung(10), ten basis functions are reasonable 
for computations of the natural frequencies and 
dynamic responses. 

The dynamic responses for the time-dependent 
moving speed and time-dependent spinning speed 
are computed. The material properties used for 
computation are beam diameter d = 0.01 m, total 
length L = 10 m, initial deployed length l(0) = 2 m, 
mass density 2738.6 kg/m3, Young’s modulus E =
6.8335 × 1010 N/m2, the initial deflection for the 
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lateral displacement v is given as 5 mm. The 
time-dependent moving speed profile is given in 
Fig. 2, while the spinning speed profile is also 
given in Fig. 3. Two cases are considered for 
comparison. Fig. 3(a) is a constant case and Fig. 
3(b) is a time-dependent case.

The dynamic response for the constant case is 
presented in Fig. 4. As shown in this figure, the 
dynamic response computed by this study is in 
agreement with that by the previous study(10). It is 
observed the beat phenomenon occurs. According 
to the results given by the authors(10), the beat 
phenomenon occurs due to interference of the first 
and second natural frequencies of the beam.

The effect of the time-dependent spinning speed 
on the dynamic response is investigated. Fig. 5 
shows the dynamic response for the time-depend-
ent spinning speed profile of Fig. 3(b). As shown 
in Fig. 5, at the initial stage, lateral v starts from 
5 mm while w starts from 0 mm. This is because 
spin introduces gyroscopic effect. When one of 
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the lateral displacements is excited, the other one 
is also excited. Note that the magnitude of the 
lateral displacement in Fig. 5 is smaller than that 
in Fig. 4 because the initial spining speed for the 
time-dependent case is smaller than the constant 
spinning speed. 

At the accelerating interval from 0 s to 2 s, the 
period decreases with time. This phenomenon is 
because the spinning speed increases. At the con-
stant speed interval from 2 s to 4 s, the beat phe-
nomenon occurs. The beat phenomenon occurs due 
to the interference of the first and second natural 
frequencies of the spinning beam as mentioned 
before. At the decelerating interval from 4 s to 6 s, 
the period increases. This is because the beam 
length increases and spinning speed decreases. It 
is also found that compared with the previous 
studies, the beat phenomenon disappears at the de-
celerating interval. This difference between the 
present and previous studies may be caused by 
the effect of the time-dependent spinning speed.
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It is necessary to investigate the disappearance 
of the beat phenomenon in the decelerating 
interval. According to the conclusion in the pre-
vious study, the beat phenomenon occurs due to 
the first and second natural frequencies of the 
spinning beam. The first and second natural fre-
quencies are given as

2 4
1 1.8751 EI Alω ρ= − Ω (18)

2 4
2 1.8751 EI Alω ρ= + Ω (19)

The difference of the first and second natural 
frequencies ( 2ω  - 1ω ) is computed versus the 
combination of the spinning speed and beam 
length, and plotted in Fig. 6. As shown in this 
figure, when the beam length increases, the differ-
ence becomes smaller, and the beat phenomenon 
occurs. It should be noted that, for a certain beam 
length, the differences are similar whether the 
spinning speed is high or low. So the difference 
of the first and second natural frequencies may be 
not enough to explain and another new criterion 
needs to be proposed.

To explain the disappearance of the beat phe-
nomenon in the decelerating interval, we inves-
tigate the difference ratio of the first and second 
natural frequencies verses the combination of the 
spinning speed and beam length. The difference 
ratio can be used to evaluate the relative differ-
ence and it may be may be written as

2 1 1( ) /ω ω ω ωΔ = − (20)

The difference ratio may be used to explain the 
disappearance of the beat phenomenon in the de-
celerating interval. The difference ratio versus the 
spinning speed and beam length are computed and 
plotted in Fig. 7. As shown in this figure, at the 
initial stage (region A), the spinning speed is low 
and the beam length is short, the difference ratio 
is large, beat does not occur. At the middle stage 
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(region B), the beam has a medium length and a 
high spinning speed, the difference ratio becomes 
small, the beat occurs. At the later stage (region 
C), the speed becomes low and the length be-
comes long, the difference ratio becomes large 
again, the beat phenomenon disappears. Therefore, 
beat does not occur when the spinning speed is 
low and the beam length is long.

3. Conclusion

In this study, the vibration of a deploying and 
spinning beam is analyzed when the spinning 
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speed is time-dependent. The Euler-Bernoulli beam 
and the von Karman nonlinear strain are used to 
model the deploying beam with spin. By consider-
ing the time-dependent spinning speed, the new 
equations of motion with angular acceleration are 
derived. The Galerkin method is adopted to dis-
cretize the equations of motion. The effects of the 
time-dependent spinning speed on the dynamic re-
sponses are investigated. The dynamic responses 
for the case of the constant speed and the 
time-dependent spinning speed are compared. It is 
found during deployment, when the spinning 
speed decreases, the beat phenomenon may dis-
appear because the difference ratio of the first and 
second natural frequencies is large.
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