• Title/Summary/Keyword: dynamic characteristics analysis

Search Result 4,073, Processing Time 0.064 seconds

Disturbance analysis of hydropower station vertical vibration dynamic characteristics: the effect of dual disturbances

  • Zhi, Baoping;Ma, Zhenyue
    • Structural Engineering and Mechanics
    • /
    • v.53 no.2
    • /
    • pp.297-309
    • /
    • 2015
  • The purpose of this work is to analyze the effect of structure parameter disturbance on the dynamic characteristics of a hydropower station powerhouse. A vibration model with a head-cover system is established, and then the general disturbance problem analysis methods are discussed. Two new formulae based on two types of disturbances are developed from existing methods. The correctness and feasibility of these two formulae are validated by analyzing the hydropower station powerhouse vibration model. The appropriate calculation method for disturbance of the hydropower station powerhouse vibration dynamic characteristics is derived.

Moving Mesh Technique for Dynamic Characteristics Analysis of Permanent Magnet Linear Synchronous (영구 자석형 선형 동기전동기의 동특성 해석을 위한 이동 메쉬 기법)

  • Woo, Kyung-Il;Kwon, Byung-Il
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.2
    • /
    • pp.53-58
    • /
    • 2001
  • This paper describes a moving mesh technique for dynamic characteristics analysis of permanent magnet linear synchronous motor with the secondary aluminium sheet. The moving mesh technique applied to the linear induction motor can be used to analyze the linear synchronous motor with the rectangular permanent magnet. But in case of the permanent magnet with taper, the shape of the permanent magnet is presented. The time-stepped finite element method is used for the dynamic characteristics simulation of the permanent magnet linear synchronous motor, The results of application example(hysteresis current controlled inverter fed control) such as thrust, current and flux plots are shown.

  • PDF

An Analysis of Load Characteristics of Air-Lubricated Herringbone Groove Journal Bearing By Finite Element Method (공기윤활 빗살무늬 저널베어링의 부하특성에 대한 유한요소해석)

  • 박신욱;임윤철
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.353-362
    • /
    • 2000
  • Herringbone groove journal bearing (HGJB) is developed to improve the static and dynamic performances of hydrodynamic journal bearing. In this study, static and dynamic compressible isothermal lubrication problems are analyzed by the finite element method together with the Newton-Raphson iterative procedure. This analysis is introduced for prediction of the static and dynamic characteristics of air lubricated HGJB for various bearing configurations. The bearing load characteristics and dynamic characteristics are dependent on geometric parameters such as asymmetric ratio, groove depth ratio, groove width ratio and groove angle.

  • PDF

Dynamic Characteristics Analysis of Spherical Shell with Initial Deflection(II) - Effects of Initial Deflection - (초기 처짐을 갖는 Spherical Shell의 동적 특성에 관한 연구(II) - 초기 처짐에 따른 동적 특성 -)

  • Cho, Jin-Goo
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.5
    • /
    • pp.91-99
    • /
    • 1998
  • The widespread use of thin shell structures has created a need for a systematic method of analysis which can adequately account for arbitrary geometric form and boundary conditions as well as arbitrary general type of loading. Therefore, the stress and analysis of thin shell has been one of the more challenging areas of structural mechanics. A wide variety of numerical methods have been applied to the governing differential equations for spherical and cylindrical structures with a few results applicable to practice. The analysis of axisymmetric spherical shell is almost an every day occurrence in many industrial applications. A reliable and accurate finite element analysis procedure for such structures was needed. Dynamic loading of structures often causes excursions of stresses well into the inelastic range and the influence of geometry changes on the response is also significant in many cases. Therefore both material and geometric nonlinear effects should be considered. In general, the shell structures designed according to quasi-static analysis may fail under conditions of dynamic loading. For a more realistic prediction on the load carrying capacity of these shell, in addition to the dynamic effect, consideration should also include other factors such as nonlinearities in both material and geometry since these factors, in different manner, may also affect the magnitude of this capacity. The objective of this paper is to demonstrate the dynamic characteristics of spherical shell. For these purposes, the spherical shell subjected to uniformly distributed step load was analyzed for its large displacements elasto-viscoplastic static and dynamic response. Geometrically nonlinear behaviour is taken into account using a Total Lagrangian formulation and the material behaviour is assumed to elasto-viscoplastic model highly corresponding to the real behaviour of the material. The results for the dynamic characteristics of spherical shell in the cases under various conditions of base-radius/central height(a/H) and thickness/shell radius(t/R) were summarized as follows : The dynamic characteristics with a/H. 1) AS the a/H increases, the amplitude of displacement in creased. 2) The values of displacement dynamic magnification factor (DMF) were ranges from 2.9 to 6.3 in the crown of shell and the values of factor in the mid-point of shell were ranged from 1.8 to 2.6. 3) As the a/H increases, the values of DMF in the crown of shell is decreased rapidly but the values of DMF in mid-point shell is increased gradually. 4) The values of DMF of hoop-stresses were range from 3.6 to 6.8 in the crown of shell and the values of factor in the mid-point of shell were ranged from 2.3 to 2.6, and the values of DMF of stress were larger than that of displacement. The dynamic characteristics with t/R. 5) With the thickness of shell decreases, the amplitude of the displacement and the period increased. 6) The values of DMF of the displacement were ranged from 2.8 to 3.6 in the crown of shell and the values of factor in the mid-point of shell were ranged from 2.1 to 2.2.

  • PDF

The uncertainty problem analysis of the engineering solution for prediction and estimation of the operating regime to design of gas- hydro-dynamic systems

  • Kartovitskiy, Lev;Tsipenko, Anton;Lee, Ji-Hyung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.459-468
    • /
    • 2009
  • Analysis of the uncertainty to have engineering solution of gas-dynamic and hydrodynamic problems is based on the comparison the prospective engineering solution with experimental result. In this paper, the mathematical model to estimate heat flux along gas-dynamic channel wall and the solution sequence are shown. Statistical information and generalizing experimental characteristics about gas- and hydro-dynamic channels were applied to the mathematical model. As the results, it is possible to draw a conclusion that models of the integrated approach, using the averaged statistical data of generalizing characteristics for a turbulent flow, without consideration of the turbulent mechanism (characteristic pulsations), can predict a nominal operating regime for gas-dynamic and hydrodynamic systems. The probable deviation of operating regime for newly designed the gas-dynamic channel can achieve 20% from a regime predicted on a basis 1-D or 3-D modelling irrespective of a kind of used models.

  • PDF

Effects of Material Characteristics on the Dynamic Response of the Reinforced Concrete Slabs (재료 특성이 철근 콘크리트 슬래브의 동적 거동에 미치는 영향)

  • Oh, Kyung-Yoon;Cho, Jin-Goo;Hong, Chong-Hyun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.4
    • /
    • pp.43-49
    • /
    • 2007
  • The reinforced concrete slab is one of main structure members in the construction industry sector. However, most of researches regarding to RC slabs have been focused on two-dimensional Mindlin-type plate element on the basis of laminated plate theory since three-dimensional solid element has a lot of difficulties in finite element formulation and costs in CPU time. In reality, the RC slabs are subjected to dynamic loads like a heavy traffic vehicle load, and thus should insure the safety from the static load as well as dynamic load. Once we can estimate the dynamic behaviour of RC slabs exactly, it will be very helpful for design of it. In this study, the 20-node solid element has been used to analyze the dynamic characteristics of RC slabs with clamped edges. The elasto-visco plastic model for material non-linearity and the smeared crack model have been adopted in the finite element formulation. The applicability of the proposed finite element has been tested for dynamic behaviour of RC slabs with respect to characteristics of concrete materials in terms of cracking stress, crushing strain, fracture energy and Poisson's ratio. The effect on dynamic behaviour is dependent on not crushing strain but cracking stress, fracture energy and Poisson's ratio. In addition to this, it is shown the damping phenomenon of RC slabs has been identified from the numerical results by using Rayleigh damping.

An Analysis of Dynamic Characteristics of 3o% U Slider-Air Bearings by Using Perturbation Method (섭동법을 이용한 30% U 형 공기윤활 슬라이더 베어링의 동특성 해석)

  • 강태식;정태건;최동훈
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.291-296
    • /
    • 1999
  • This study presents a method for determining stiffness and damping coefficients of 30% U slider-air bearings by using perturbation method, and shows that this method is more accurate than steady state method according to the comparison of those with the modal analysis method. Through a generalized lubrication equation, which based on linealized Boltzmann equation, the static and dynamic pressure distributions are calculated by finite volume method.

  • PDF

Dynamic Analysis of Structures by Component Mode Method using Ritz-Lanczos Algorithm (Ritz-Lanczos알고리즘을 이용한 Component mode Method에 의한 구조물의 동적 해석)

  • 심재수
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.10a
    • /
    • pp.151-158
    • /
    • 1997
  • The main concern of numerical dynamic analysis of large structures is to find an acceptable solution with fewer mode shapes and less computational efforts. component mode method utilizes substructure technique to reduce the degrss of freedom but have a disadvantage to not consider the dynamic characteristics of loads. Ritz Vector method consider the load characteristics but requires many integrations and errors are accumulated. In this study, to prove the effectiveness of component mode method, Lanczos algorithm are introduced. To prove the effectiveness of this method, example structures areanalyzed and the results are compared with SAP90.

  • PDF

Study on the Dynamic Characteristics of Rolling Stocks Passing on the High Speed Turnout System (고속용 분기기를 통과하는 철도차량의 동특성 예측연구)

  • 정우진;신정렬;양신추;김남포
    • Proceedings of the KSR Conference
    • /
    • 2000.05a
    • /
    • pp.226-233
    • /
    • 2000
  • This study has been performed to develop the practical method to estimate the change of dynamic characteristics of rolling stocks passing on the high speed turnout system. Each part of turnout system are modeled in consideration of alignment, enter angle and amount of deflection and they are used to achieve dynamic analysis with a train model. Analysis results are compared with test results to confirm its validation

  • PDF