• Title/Summary/Keyword: dual-rate sampling

Search Result 28, Processing Time 0.025 seconds

Determination of Appropriate Sampling Frequency and Time of Multiple Blood Sampling Dual Exponential Method with $^{99m}Tc$-DTPA for Calculating GFR (사구체여과율 계산을 위한 $^{99m}Tc$-DTPA를 이용한 다중 채혈 이중지수법의 적정 채혈 횟수 및 시간의 선정)

  • Kim, Chung-Ho;O, Joo-Hyun;Chung, Yong-An;Yoo, Ie-Ryung;Sohn, Hyung-Sun;Kim, Sung-Hoon;Chung, Soo-Kyo;Lee, Hyoung-Koo
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.40 no.1
    • /
    • pp.33-39
    • /
    • 2006
  • Purpose: To determine appropriate sampling frequency and time of multiple blood sampling dual exponential method with $^{99m}Tc$-DTPA for calculating glomerular filtration rate (GFR). Materials & Methods: Thirty four patients were included in this study. Three mCi of $^{99m}Tc$-DTPA was intravenously injected and blood sampling at 9 different times, 5ml each, were done. Using the radioactivity of serum, measured by gamma counter, the GFR was calculated using dual exponential method and corrected with the body surface area. Using spontaneously chosen 2 data points of serum radioactivity, 15 collections of 2-sample GFR were calculated. And 10 collections of 3-sample GFR and 12 collections of 4-sample GFR were also calculated. Using the 9-sample GFR as a reference value, degree of agreement was analyzed with Kendall's $\tau$ correlation coefficients, mean difference and standard deviation. Results: Although some of the 2-sample GFR showed high correlation coefficient, over or underestimation had evolved as the renal function change. The 10-120-240 min 3-sample GFR showed a high correlation coefficient (${\tau}=0.93$), minimal difference ($Mean{\pm}SD=-1.784{\pm}3.972$), and no over or underestimation as the renal function changed. The 4-sample GFR showed no better accuracy than the 3-sample GFR. Conclusions: In the wide spectrum of renal function, the 10-120-240 min 3-sample GFC could be the best choice for estimating the patients' renal function.

Effect of the sampling time of high-frequency ZOH and a physical damper on stable haptic interaction (고주파 영차홀드의 샘플링 주기와 물리적 댐퍼가 안정적인 햅틱 상호작용에 미치는 영향)

  • Lee, Kyungno
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.649-654
    • /
    • 2019
  • Stable haptic interaction with virtual environments is essential not only for the safety of the user but also for improving the immersion of the user. If the coefficient of a virtual spring is increased, the system becomes unstable. Therefore, the coefficient of the virtual spring is limited. The haptic system with the high-frequency zero-order-hold (HF-ZOH) is proposed to enhance the stability margin of a virtual spring. In this paper, the relationship among the sampling period of HF-ZOH, the coefficient of the physical damper, and the maximum stable margin of the virtual spring is analyzed. The lager the coefficient of the physical damper is, the shorter the sampling period of the HF-ZOH is, the larger the stable region of the virtual spring becomes. If the ratio N is larger than 40, the stable region of the proposed method is about three times to eight times that of the previous method, according to the coefficient of the physical damper. Hence the method enables to improve the user's realism in virtual environments.

An Iterative Image Reconstruction Method for the Region-of-Interest CT Assisted from Exterior Projection Data (Exterior 투영데이터를 이용한 Region-of-Interest CT의 반복적 영상재구성 방법)

  • Jin, Seung Oh;Kwon, Oh-Kyong
    • Journal of Biomedical Engineering Research
    • /
    • v.35 no.5
    • /
    • pp.132-141
    • /
    • 2014
  • In an ordinary CT scan, a large number of projections with full field-of-view (FFOV) are necessary to reconstruct high resolution images. However, excessive x-ray dosage is a great concern in FFOV scan. Region-of-interest (ROI) CT or sparse-view CT is considered to be a solution to reduce x-ray dosage in CT scanning, but it suffers from bright-band artifacts or streak artifacts giving contrast anomaly in the reconstructed image. In this study, we propose an image reconstruction method to eliminate the bright-band artifacts and the streak artifacts simultaneously. In addition to the ROI scan for the interior projection data with relatively high sampling rate in the view direction, we get sparse-view exterior projection data with much lower sampling rate. Then, we reconstruct images by solving a constrained total variation (TV) minimization problem for the interior projection data, which is assisted by the exterior projection data in the compressed sensing (CS) framework. For the interior image reconstruction assisted by the exterior projection data, we implemented the proposed method which enforces dual data fidelity terms and a TV term. The proposed method has effectively suppressed the bright-band artifacts around the ROI boundary and the streak artifacts in the ROI image. We expect the proposed method can be used for low-dose CT scans based on limited x-ray exposure to a small ROI in the human body.

A Study on the Environmental Hazard Factors within Children's Play Facilities in Gyeonggi-do Province (경기도 내 어린이놀이터 환경유해인자 오염실태 연구)

  • Won, Jong-Moo;Byun, Joo-Hyeong;Kim, Woong-Soo;Kim, Eun-Ah;Kim, Mun-Jeong;Choi, Yun-Ho;Jo, Ui-Ho;Kim, Jong-Su
    • Journal of Environmental Health Sciences
    • /
    • v.44 no.4
    • /
    • pp.340-347
    • /
    • 2018
  • Objectives: This study was performed to determine environmental hazard factors and provide more eco-friendly child activity spaces within children's playgrounds installed in Gyeonggi-do Province. Methods: Basic (XRF) and precise (ICP, UV) inspections were conducted. The test items examined were heavy metals and parasite eggs. As a sampling point, painted finish materials (180), synthetic rubber (50), and sand (50) were selected. Results: The total excess rate of heavy metals in the XRF was found to be 7.4% (17/230 points). In a comparison between the basic and precise inspections with 17 excess points, the concentration deviation between the two tests was found to be from 0.01 to 7.7 times, resulting in a large difference. Furthermore, all the excess samples were dual samples. However, the contribution rates of Pb and $Cr^{6+}$ to combined concentration were found to be 85.1 and 14.9% for basic inspection and 91.9 and 8.1% for precise inspections, so there is a similar tendency between the two tests. The excess rate of parasite eggs in sand was expressed at 6%. The excess rate of heavy metals in synthetic rubber was found to be 0%. Conclusion: The reliability of the XRF is low. However, considering the contribution rate of Pb and $Cr^{6+}$ between the two tests, it is likely to be applicable for screening. Dual samples provided high concentrations and excess samples and care should be taken when managing them.

A 12b 100 MS/s Three-Step Hybrid Pipeline ADC Based on Time-Interleaved SAR ADCs

  • Park, Jun-Sang;An, Tai-Ji;Cho, Suk-Hee;Kim, Yong-Min;Ahn, Gil-Cho;Roh, Ji-Hyun;Lee, Mun-Kyo;Nah, Sun-Phil;Lee, Seung-Hoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.2
    • /
    • pp.189-197
    • /
    • 2014
  • This work proposes a 12b 100 MS/s $0.11{\mu}m$ CMOS three-step hybrid pipeline ADC for high-speed communication and mobile display systems requiring high resolution, low power, and small size. The first stage based on time-interleaved dual-channel SAR ADCs properly handles the Nyquist-rate input without a dedicated SHA. An input sampling clock for each SAR ADC is synchronized to a reference clock to minimize a sampling-time mismatch between the channels. Only one residue amplifier is employed and shared in the proposed ADC for the first-stage SAR ADCs as well as the MDAC of back-end pipeline stages. The shared amplifier, in particular, reduces performance degradation caused by offset and gain mismatches between two channels of the SAR ADCs. Two separate reference voltages relieve a reference disturbance due to the different operating frequencies of the front-end SAR ADCs and the back-end pipeline stages. The prototype ADC in a $0.11{\mu}m$ CMOS shows the measured DNL and INL within 0.38 LSB and 1.21 LSB, respectively. The ADC occupies an active die area of $1.34mm^2$ and consumes 25.3 mW with a maximum SNDR and SFDR of 60.2 dB and 69.5 dB, respectively, at 1.1 V and 100 MS/s.

Precise Orbit Determination of LEO Satellite Using Dual-Frequency GPS Data (이중 주파수 GPS 데이터를 이용한 저궤도 위성의 정밀궤도결정)

  • Hwang, Yoo-La;Lee, Byoung-Sun;Kim, Jae-Hoon;Yoon, Jae-Cheol
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.2
    • /
    • pp.229-236
    • /
    • 2009
  • KOorea Multi-purpose SATellite(KOMPSAT)-5 will be launched at 550km altitude in 2010. Accurate satellite position(20 cm) and velocity(0.03 cm/s) are required to treat highly precise Synthetic Aperture Radar(SAR) image processing. Ionosphere delay was eliminated using dual frequency GPS data and double differenced GPS measurement removed common clock errors of both GPS satellites and receiver. SAC-C carrier phase data with 0.1 Hz sampling rate was used to achieve precise orbit determination(POD) with ETRI GNSS Precise Orbit Determination(EGPOD) software, which was developed by ETRI. Dynamic model approach was used and satellite's position, velocity, and the coefficients of solar radiation pressure and drag were adjusted once per arc using Batch Least Square Estimator(BLSE) filter. Empirical accelerations for sinusoidal radial, along-track, and cross track terms were also estimated once per revolution for unmodeled dynamics. Additionally piece-wise constant acceleration for cross-track direction was estimated once per arc. The performance of POD was validated by comparing with JPL's Precise Orbit Ephemeris(POE).

Experimental investigation of Scalability of DDR DRAM packages

  • Crisp, R.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.4
    • /
    • pp.73-76
    • /
    • 2010
  • A two-facet approach was used to investigate the parametric performance of functional high-speed DDR3 (Double Data Rate) DRAM (Dynamic Random Access Memory) die placed in different types of BGA (Ball Grid Array) packages: wire-bonded BGA (FBGA, Fine Ball Grid Array), flip-chip (FCBGA) and lead-bonded $microBGA^{(R)}$. In the first section, packaged live DDR3 die were tested using automatic test equipment using high-resolution shmoo plots. It was found that the best timing and voltage margin was obtained using the lead-bonded microBGA, followed by the wire-bonded FBGA with the FCBGA exhibiting the worst performance of the three types tested. In particular the flip-chip packaged devices exhibited reduced operating voltage margin. In the second part of this work a test system was designed and constructed to mimic the electrical environment of the data bus in a PC's CPU-Memory subsystem that used a single DIMM (Dual In Line Memory Module) socket in point-to-point and point-to-two-point configurations. The emulation system was used to examine signal integrity for system-level operation at speeds in excess of 6 Gb/pin/sec in order to assess the frequency extensibility of the signal-carrying path of the microBGA considered for future high-speed DRAM packaging. The analyzed signal path was driven from either end of the data bus by a GaAs laser driver capable of operation beyond 10 GHz. Eye diagrams were measured using a high speed sampling oscilloscope with a pulse generator providing a pseudo-random bit sequence stimulus for the laser drivers. The memory controller was emulated using a circuit implemented on a BGA interposer employing the laser driver while the active DRAM was modeled using the same type of laser driver mounted to the DIMM module. A custom silicon loading die was designed and fabricated and placed into the microBGA packages that were attached to an instrumented DIMM module. It was found that 6.6 Gb/sec/pin operation appears feasible in both point to point and point to two point configurations when the input capacitance is limited to 2pF.

Estimation of Ultrasonic Attenuation Coefficients in the Frequency Domain using Compressed Sensing (압축 센싱을 이용한 주파수 영역의 초음파 감쇠 지수 예측)

  • Shim, Jaeyoon;Kim, Hyungsuk
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.6
    • /
    • pp.167-173
    • /
    • 2016
  • Compressed Sensing(CS) is the theory that can recover signals which are sampled below the Nyquist sampling rate to original analog signals. In this paper, we propose the estimation algorithm of ultrasonic attenuation coefficients in the frequency domain using CS. While most estimation algorithms transform the time-domain signals into the frequency-domain using the Fourier transform, the proposed method directly utilize the spectral information in the recovery process by the basis matrix without the completely recovered signals in the time domain. We apply three transform bases for sparsifying and estimate the attenuation coefficients using the Centroid Downshift method with Dual-reference diffraction compensation technique. The estimation accuracy and execution time are compared for each basis matrix. Computer simulation results show that the DCT basis matrix exhibits less than 0.35% estimation error for the compressive ratio of 50% and about 6% average error for the compressive ratio of 70%. The proposed method which directly extracts frequency information from the CS signals can be extended to estimating for other ultrasonic parameters in the Quantitative Ultrasound (QUS) Analysis.