• Title/Summary/Keyword: dual-layer

Search Result 378, Processing Time 0.026 seconds

Analysis of Beam Hardening of Modulation Layers for Dual Energy Cone-beam CT (에너지 변조 필터로 구현한 이중 에너지 콘빔 CT의 에너지 스펙트럼 평가 연구)

  • Ahn, Sohyun;Cho, Sam Ju;Keum, Ki Chang;Choi, Sang Gyu;Lee, Rena
    • Progress in Medical Physics
    • /
    • v.27 no.1
    • /
    • pp.8-13
    • /
    • 2016
  • Dual energy cone-beam CT can distinguish two materials with different atomic compositions. The principle of dual energy cone-beam CT based on modulation layer is that higher energy spectrum can be acquired at blocked x-ray window. To evaluate the possibility of modulation layer based dual energy cone-beam CT, we analyzed x-ray spectrum for various thicknesses of modulation layers by Monte Carlo simulation. To compare with the results of simulation, the experiment was performed on prototype cone-beam CT for 50~100 kVp with CdTe XR-100T detector. As the result of comparing, the mean energy of energy spectrum for 80 kVp are well matched with that of simulation. The mean energy of energy spectrum for 80 and 120 kVp were increased as 1.67 and 1.52 times by 2.0 mm modulation layer, respectively. We realized that the virtual dual energy x-ray source can be generated by modulation layer.

Improvement of Rapid Sand Filtration to Two Stage Dual Media Filtration System in Water Treatment Plant (정수처리장내 급속모래 여과지의 이단복합여과시스템으로의 개량)

  • Woo, Dal-Sik;Hwang, Kyu-Won;Kim, Joon-Eon;Hwang, Byung-Gi;Jo, Kwan-Hyung
    • Journal of Environmental Health Sciences
    • /
    • v.37 no.2
    • /
    • pp.141-149
    • /
    • 2011
  • This study aimed for developing a two stage dual media filtration system. It has a sand and activated carbon layer above the under-drain system, and a sand layer above the middle-drain system for pretreatment. When retrofitting an old sand filter bed or designing a new one, this technology can substitute the existing sand filter bed without requiring a new plant site. The removal rate of total particle is 93, and 3~7 ${\mu}m$ and 5~15 ${\mu}m$ particles are all 97%. These high removal efficiencies of each pollutant due to adsorption and biological oxidation in activated carbon filter layer. The best backwashing method of two stage dual media filtration system is ascertained by air injection, air + water injection and water injection sequence. In this study, a pilot plant of two stage and dual filtration system was operated for 4 months in water treatment plant. The stability of turbidity was maintained below 1 NTU. The TOC, THMFP and HAAFP were removed about 90% by two stage and dual media filtration system, which is almost 2 times higher than existing water treatment plant.

Feasibility of Single-Shot Dual-Energy X-ray Imaging Technique for Printed-Circuit Board Inspection (인쇄회로기판 검사를 위한 단일조사 이중에너지 엑스선 영상기법의 유용성에 관한 연구)

  • Kim, Seung Ho;Kim, Dong Woon;Kim, Daecheon;Kim, Junwoo;Park, Ji Woong;Park, Eunpyeong;Kim, Jinwoo;Kim, Ho Kyung
    • Journal of Radiation Industry
    • /
    • v.9 no.3
    • /
    • pp.137-141
    • /
    • 2015
  • A single-shot dual-energy x-ray imaging technique has been developed using a sandwich detector by stacking two detectors, in which the front and rear detectors respectively produce relatively lower and higher x-ray energy images. Each detector layer is composed of a phosphor screen coupled with a photodiode array. The front detector layer employs a thinner phosphor screen, whereas the rear detector layer employs a thicker phosphor screen considering the quantum efficiency for x-ray photons with higher energies. We have applied the proposed method into the inspection of printed circuit boards, and obtained dual-energy images with background clutter suppressed. In addition, the single-shot dual-energy method provides sharper-edge images than the conventional radiography because of the unsharp masking effect resulting from the use of different thickness phosphors between the two detector layers. It is promising to use the single-shot dual-energy x-ray imaging for high-resolution nondestructive testing. For the reliable use of the developed method, however, more quantitative analysis is further required in comparisons with the conventional method for various types of printed circuit boards.

Effect of Total Collimation Width on Relative Electron Density, Effective Atomic Number, and Stopping Power Ratio Acquired by Dual-Layer Dual-Energy Computed Tomography

  • Jung, Seongmoon;Kim, Bitbyeol;Yoon, Euntaek;Kim, Jung-in;Park, Jong Min;Choi, Chang Heon
    • Progress in Medical Physics
    • /
    • v.32 no.4
    • /
    • pp.165-171
    • /
    • 2021
  • Purpose: This study aimed to evaluate the effect of collimator width on effective atomic number (EAN), relative electron density (RED), and stopping power ratio (SPR) measured by dual-layer dual-energy computed tomography (DL-DECT). Methods: CIRS electron density calibration phantoms with two different arrangements of material plugs were scanned by DL-DECT with two different collimator widths. The first phantom included two dense bone plugs, while the second excluded dense bone plugs. The collimator widths selected were 64 mm×0.625 mm for wider collimators and 16 mm×0.625 mm for narrow collimators. The scanning parameters were 120 kVp, 0.33 second gantry rotation, 3 mm slice thickness, B reconstruction filter, and spectral level 4. An image analysis portal system provided by a computed tomography (CT) manufacturer was used to derive the EAN and RED of the phantoms from the combination of low energy and high energy CT images. The EAN and RED were compared between the images scanned using the two different collimation widths. Results: The CT images with the wider collimation width generated more severe artifacts, particularly with high-density material (i.e., dense bone). RED and EAN for tissues (excluding lung and bones) with the wider collimation width showed significant relative differences compared to the theoretical value (4.5% for RED and 20.6% for EAN), while those with the narrow collimation width were closer to the theoretical value of each material (2.2% for EAN and 2.3% for RED). Scanning with narrow collimation width increased the accuracy of SPR estimation even with high-density bone plugs in the phantom. Conclusions: The effect of CT collimation width on EAN, RED, and SPR measured by DL-DECT was evaluated. In order to improve the accuracy of the measured EAN, RED, and SPR by DL-DECT, CT scanning should be performed using narrow collimation widths.

Applicability Evaluation of Two-stages and Dual Media Filtration System by the Small-scale Pilot Plant (이단이층 복합여과시스템의 소규모 파일롯 플랜트 적용성 평가)

  • Woo, Dal-Sik;Song, Si-Byum;Hwang, Byung-Gi
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.4
    • /
    • pp.857-864
    • /
    • 2009
  • This study aimed at developing the two stage and dual filtration system. It has a sand + activated carbon layer above the underdrain system and a sand layer above the middledrain system for pretreatment. When retrofitting an old filter bed or designing a new one, this technology can substitute the existing sand filter bed without requiring a new site. In order to extend the filtering duration, the upper layer of the filter bed consists of the rapid sand filtration with large particles which pre-treats and removes coarse particles and turbidity matters. The middle layer has biological activated carbon(BAC) and granular activated carbon(GAC) to eliminate dissolved organic matters, disinfection by-products precursors etc. The lower layer consists of the sand filtration for the post filtering mode. In this study, a pilot plant of two stage and dual filtration system was operated for 4 months in the S water treatment plant in Kyounggi-Do. The stability of turbidity was maintained below 1NTU. The TOC, THMFP and HAAFP were removed about 90% by two stage and dual filtration system, which is almost 2 times higher than S WTP. From analysis result of HPC along the depth of activated carbon + sand layer at 2nd stage, microorganism was mostly not detected, however, increment of HPC was shown as it becomes deeper. It indicates that growth of microorganism is occurred at activated carbon layer.

Threshold Voltage Control of Pentacene Thin-Film Transistor with Dual-Gate Structure

  • Koo, Jae-Bon;Ku, Chan-Hoe;Lim, Sang-Chul;Lee, Jung-Hun;Kim, Seong-Hyun;Lim, Jung-Wook;Yun, Sun-Jin;Yang, Yong-Suk;Suh, Kyung-Soo
    • Journal of Information Display
    • /
    • v.7 no.3
    • /
    • pp.27-30
    • /
    • 2006
  • This paper presents a comprehensive study on threshold voltage $(V_{th})$ control of organic thin-film transistors (OTFTs) with dual-gate structure. The fabrication of dual-gate pentacene OTFTs using plasma-enhanced atomic layer deposited (PEALD) 150 nm thick $Al_{2}O_{3}$ as a bottom gate dielectric and 300 nm thick parylene or PEALD 200 nm thick $Al_{2}O_{3}$ as both a top gate dielectric and a passivation layer was investigated. The $V_{th}$ of OTFT with 300 nm thick parylene as a top gate dielectric was changed from 4.7 V to 1.3 V and that with PEALD 200 nm thick $Al_{2}O_{3}$ as a top gate dielectric was changed from 1.95 V to -9.8 V when the voltage bias of top gate electrode was changed from -10 V to 10 V. The change of $V_{th}$ of OTFT with dual-gate structure was successfully investigated by an analysis of electrostatic potential.

Electromigration Characteristics Stduy DCV Interconnect Structures in Cu Dual-Damascene Process (Cu Dual Damascene 배선 공정에서의 DCV 배선구조의 EM 특성 연구)

  • Lee, Hyun-Ki;Choi, Min-Ho;Kim, Nam-Hoon;Kim, Sang-Yong;Chang, Eui-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.123-124
    • /
    • 2005
  • We investigated the effect of a Ta/TaN Cu diffusion barrier existence on the reliability and the electrical performance of Cu dual-damascene interconnects. A high EM performance in Cu dual-damascene structure was observed the BCV(barrier contact via) interconnect structure to remain Ta/TaN barrier layer. Via resistance was decreased DCV interconnect structure by bottomless process. This structure considers that DCV interconnect structure has lower activation energy and higher current density than BCV interconnect structure. The EM failures by BCV via structure were formed at via hole, but DCV via structure was formed EM fail at the D2 line. In order to improve the EM characteristic of DCV interconnect structure by bottomless process, after Ta/TaN diffusion barrier layer in via bottom is removed by Ar+ resputtering process, it is desirable that Ta thickness is thickly made by Ta flash process.

  • PDF

Improvement of Migration Lifetime by Dual-sized Grain Structure in 1% Si-Al Metal Line (이중 결정립 구조 1%Si-Al 금속선에 의한 Migration 수명의 개선)

  • 김영철;김철주
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.30A no.6
    • /
    • pp.1-7
    • /
    • 1993
  • After the 1%S-Al metal is deposited, a thin oxide is formed thereon. Then, a single charged Argon(Ar$^{+}$) is ion implanted into the oxide layer, thereby causing the metal grain in the upper surface of the metal layer to become amorphous. Consequently, the grain size will be reduced and the rough surface of the metal layer flattened. However, the remainder of the metal layer beneath the upper surface thereof will still exhibit large grain size and low resistance, because the Argon ion is only implanted to characterized by a dual-sized grain structure which served to reduce interlayer stress, thereby decreasing the rate of stress migration, and to lower the resistivity of the metal line, thereby enhancing the electromigration characteristic thereof. Experiments have shown that the metal line exhibits a metal migration rate which is approximately 700% less than the control group and a standard deviation which is approximately 200% less than these group.p.

  • PDF

Design and Implementation of the small PIFA with dual bandwidth using LTCC (이중대역 소형 LTCC 칩 PIFA의 설계 및 구현)

  • Nam, Sung-Soo;Kim, June-Hyong;Cho, Tae-June;Lee, Hong-Min
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.1 no.1
    • /
    • pp.47-52
    • /
    • 2008
  • In this paper, the small PIFA with dual bandwidth using LTCC is the proposed. The proposed PIFA is designed and fabricated for dual resonance bands (K-PCS and WiBro). It consists of two layers. The bottom layer shape PIFA has 120MHz bandwidth (1.727 ~ 1.847 GHz), it satisfied K-PCS. The top layer shape stacked element has 110MHz bandwidth (2.302 ~ 2.412 GHz), it satisfied WiBro. The top layer is stacked on the bottom layer for electric coupling. Maximum radiation gain of K-PCS, WiBro bands are 2.11 dBi, 3.71 dBi respectively. For miniaturization of the antenna structure, the PIFA using LTCC ( ${\varepsilon}_r\;=\;8$ ) chip is fabricated. The proposed PIFA shows the effect of SAR reduction also. A defect that is fabricated by stacking up the layers in the design of PIFA is complemented by fabricated in using LTCC chip.

  • PDF

SIMULTANEOUS SWITCHING NOISE MINIMIZATION TECHNIQUE USING DUAL LAYER POWER LINE MUTUAL INDUCTORS (이중 층 파워 메탈구조의 상호 인덕터를 이용한 동시 스위칭 잡음 최소화 기법)

  • Lee, Yong-Ha;Kang, Sung-Mook;Moon, Gyu
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.6
    • /
    • pp.44-50
    • /
    • 2002
  • A novel technique for minimization of simultaneous switching noise is Presented. Dual Layer Power Line (DLPL) structure i:; newly proposed for a possible silicon realization of a mutual inductor, with which an instant large current in the power line is half-divided flowing through two different, but closely coupled, layers in opposite directions. This mutual inductance between two power layers enables us to significantly reduce the switching noise. SPICE simulations show that with a mutual coupling coefficient higher than 0.8, the switching noise reduces by 63% compared to the previously reported solutions. This DLPL technique can also be applied to PCB artworks.