Browse > Article

Threshold Voltage Control of Pentacene Thin-Film Transistor with Dual-Gate Structure  

Koo, Jae-Bon (Electronics and Telecommunications Research Institute)
Ku, Chan-Hoe (Electronics and Telecommunications Research Institute)
Lim, Sang-Chul (Electronics and Telecommunications Research Institute)
Lee, Jung-Hun (Electronics and Telecommunications Research Institute)
Kim, Seong-Hyun (Electronics and Telecommunications Research Institute)
Lim, Jung-Wook (Electronics and Telecommunications Research Institute)
Yun, Sun-Jin (Electronics and Telecommunications Research Institute)
Yang, Yong-Suk (Electronics and Telecommunications Research Institute)
Suh, Kyung-Soo (Electronics and Telecommunications Research Institute)
Publication Information
Abstract
This paper presents a comprehensive study on threshold voltage $(V_{th})$ control of organic thin-film transistors (OTFTs) with dual-gate structure. The fabrication of dual-gate pentacene OTFTs using plasma-enhanced atomic layer deposited (PEALD) 150 nm thick $Al_{2}O_{3}$ as a bottom gate dielectric and 300 nm thick parylene or PEALD 200 nm thick $Al_{2}O_{3}$ as both a top gate dielectric and a passivation layer was investigated. The $V_{th}$ of OTFT with 300 nm thick parylene as a top gate dielectric was changed from 4.7 V to 1.3 V and that with PEALD 200 nm thick $Al_{2}O_{3}$ as a top gate dielectric was changed from 1.95 V to -9.8 V when the voltage bias of top gate electrode was changed from -10 V to 10 V. The change of $V_{th}$ of OTFT with dual-gate structure was successfully investigated by an analysis of electrostatic potential.
Keywords
Pentacene; Threshold voltage; Dual-Gate; Organic Thin Film Transister(OTFT);
Citations & Related Records
연도 인용수 순위
  • Reference
1 G.H. Gelink, Evan Veenendaal, and R. Coehoom. Appl. Phys, Lett. 87, 73508 (2005)   DOI   ScienceOn
2 J.W. Lim and S.J. Yun. Electrochem Solid-Stale Lett. 7. F45 (2004)   DOI   ScienceOn
3 M. Morana, G. Brest, and C. Brabec, Appl. Phys. Lett. 87. 153511 (2005)   DOI   ScienceOn
4 S. Kobayashi, T. Nishikawa, T. Takenobu, S. Mori, T. Mitani, H. Shimotani, N. Yoshimoto, S. Ogawa, and Y. Iwasa, Nat. Meater. 3, 317 (2004)   DOI   ScienceOn
5 J.H. Lee, S.H. Kim. J.B. Koo, J.W. Lim. S.C. Lim. G.H. Kim, S.J. Yun. K.S. Suh. C.H. Ku and J. Jang, J. Kor. Phys. Soc. 49, 1148 (2006)
6 C.D. Dimitrakopoulos and P.R.L. Malenfant, Adv. Mater. 14. 99 (2002)   DOI   ScienceOn
7 G. Horowitz, Adv. Mater. 10, 365 (1998)   DOI   ScienceOn
8 I. Vagi, K. Tsukagoshi, and Y. Aoyagi, Appl. Phys. Lett. 86. 103502 (2005)   DOI   ScienceOn
9 S. Dimitrijev, Understanding Semiconductor Devices (Oxford University Press, Oxford. 2000). p. 221
10 S. Iba, T. Sekitani, Y. Kato, T. Someya, H. Kawaguchi, M. Takamiya, T. Sakurai, and S. Takagi, Appl. Phys. Lett. 87. 23509 (2005)   DOI   ScienceOn
11 K.P. Pemstich, S. Haas, D. Obrhoff, C. Goldmann, D.J. Gundlach, B. Batlogg, A.N. Rashid, and G. Schitter, J. Appl. Phys. 96, 6431 (2004)   DOI   ScienceOn
12 T. Ernst, S. Cristoloveanu, G. Ghibaudo, T. Ouisse, S. Horiguchi, Y. Ono, Y. Takahashi, and K. Murase, IEEE Trans. Electron Devices 50, 830 (2003)   DOI   ScienceOn
13 T. Sekitani. S. Iba. Y. Kato. Y. Noguchi. T. Someya. and T. Sakurai, Appl. Phys. Lett. 87, 73505 (2005)   DOI   ScienceOn