• Title/Summary/Keyword: dry etch

Search Result 201, Processing Time 0.029 seconds

Fabrication of Organic Thin-Film Transistors with Polymer Gate Insulators on Plastic Substrate

  • Ahn, Seong-Deok;Kang, Seung-Youl;Oh, Ji-Young;You, In-Kyu;Kim, Gi-Heon;Baek, Kyu-Ha;Kim, Chul-Am;Suh, Kyung-Soo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1170-1173
    • /
    • 2006
  • Active layer patterned OTFT was obtained on a plastic substrate using the optimal growth condition of pentancene thin films as active layer and parylene thin films as passivation layer. Tranditional photolithography was performed to use a dry etch to pattern the material stack. The pentacene thin film and parylene thin film were deposited onto a plastic substrate using PC-OVD and CVD, respectively.

  • PDF

Throughput Analysis for Dual Blade Robot Cluster Tool (듀얼블레이드 로봇 클러스터툴의 생산성 분석)

  • Ryu, Sun-Joong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.12
    • /
    • pp.1240-1245
    • /
    • 2009
  • The throughput characteristics of the cluster tool with dual blade robot are analyzed. Using equipment's cycle time chart of the equipment, simple analytic form of the throughput is derived. Then, several important throughput characteristics are analyzed by the throughput formula. First, utilization of the process chamber and the robot are maximized by assigning the equipment to the process whose processing time is near the critical process time. Second, rule for selecting optimal number of process chambers is suggested. It is desirable to select a single process chamber plus a single robot structure for relatively short time process and multi process chambers plus a single robot, namely cluster tool for relatively long time process. Third, throughput variation between equipments due to the wafer transfer time variation is analyzed, especially for the process whose processing time is less than critical process time. And the throughput and the wafer transfer time of the equipments in our fabrication line are measured and compared to the analysis.

Dry etching properties of SBT thin films using $Cl_2/Ar$ inductively coupled plasma ($Cl_2/Ar$ 유도결합 플라즈마를 이용한 SBT 박막의 건식 식각 특성)

  • Yeo, Ji-Won;Kim, Kyoung-Tae;Kim, Dong-Pyo;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.404-407
    • /
    • 2003
  • Among the ferroeletric thin films that have been widely investigated for ferroelectric random access memory (FRAM) applications, the $SrBi_2Ta_2O_9$ (SBT) thin film is appropriate as a memory capacitor material due to its excellent fatigue endurance. SBT thin films were etched in high-density $Cl_2/Ar$ in inductively coupled plasma. The maximum etch rate of SBT film is $1834\;{\AA}/min$ under $Cl_2/(Cl_2+Ar)$ of 30 %, rf power of 700 W, dc-bias voltage of -250 V, chamber pressure of 11 mTorr and gas flow rate of 20 sccm.

  • PDF

Etching Mechanism of Indium Tin Oxide Thin Films using Cl2/HBr Inductively Coupled Plasma

  • Kim, Sung-Ihl;Kwon, Kwang-Ho
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.1
    • /
    • pp.1-4
    • /
    • 2009
  • Dry etching characteristics of indium tin oxide films and etch selectivities over photoresist films were investigated using $Cl_2/HBr$ inductively coupled plasma. From a Langmuir probe diagnostic system, it was observed that while the plasma temperature was kept nearly constant in spite of the change of the HBr mixing ratio, the positive ion density decreases rapidly with increasing the mixing ratio. On the other hand, a quadrupole mass spectrometer showed that the neutral HBr and Br species increased. The etching mechanism in the $HBr/Cl_2$ plasma was analyzed.

Thermal Nitridation of Si by RF Induction Heating (고주파 유도 가열에 의한 Si의 열적질화)

  • 이용현;왕진석
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.9
    • /
    • pp.1386-1392
    • /
    • 1990
  • Characteristics of the direct thermal nitrided films by RF induction heating has been studied. The nitrided films on Si were prepared at 1000-1200\ulcorner in ammonia gas ambient. The nitrided films were analyzed by ellipsometry an Auger electron spectroscopy. I-V and C-V characteristics of MIS capacitors fabricated using nitrided film were investicated. The nitrided films were grown up mostly within initial thirty minutes and no significant growth was observed thereafter. Etch rates of films were about 1\ulcornermin in diluted HF (HF:H2O= 1:50). The nitrided films were resistant to dry and wet oxidations at temperatures below 1000\ulcorner and 900\ulcorner, respectively.

  • PDF

Dry Etching Properties of PAR (poly-arylate) Substrate for Flexible Display Application (플렉시블 디스플레이 응용을 위한 폴리아릴레이트 기판의 식각 특성)

  • Hwanga, Jin-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.12
    • /
    • pp.824-828
    • /
    • 2016
  • In this study, effects of ICP (inductively coupled plasma) treatment on PAR thin film have been investigated. A maximum etch rate of the PAR thin films and the selectivity of PAR to PR were obtained as 110 nm/minand 1.1 in the $CF_4/O_2$ (5:15 sccm) gas mixture. We present the surface properties of PAR thin film with various treatment conditions. The surface morphology and cross section of the PAR thin film was observed by AFM (atomic force microscopy) and FE-SEM (filed emission scanning electron microscopy).

The Effect of the Anti-corrosion by$CHF_3$ Treatment after Plasma Etching of Al Alloy Films (Al 합금막의 식각후 $CHF_3$ 처리에 의한 부식억제 효과)

  • 김창일;권광호;윤용선;백규하;남기수;장의구
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.7
    • /
    • pp.517-521
    • /
    • 1998
  • After etching Al-Cu alloy films using $SiCl_4/Cl_2/He/CHF_3$ plasma, a corrosion phenomenon on the metal surface has been studied with XPS(X-ray pheotoelectron spectroscopy) and SEM (Scanning electron microscopy). In Al-Cu alloy system, the corrosion occurs rapidly on the etched surface by residual chlorine atoms. To prevent the corrosion, $CHF_3$ plasma treatment subsequent to the etch has been carried put. A passivation layer is formed by fluorine-related compounds on the etched Al-Cu surface after $CHF_3$ treatment, and the layer suppresses effectively the corrosion on the surface as the $CHF_3$treatment in the pressure of 300m Torr.

  • PDF

Decrease of Global Warming Effect During Dry Etching of Silicon Nitride Layer Using C3F6O/O2 Chemistries

  • Kim, Il-Jin;Moon, Hock-Key;Lee, Jung-Hun;Jung, Jae-Wook;Cho, Sang-Hyun;Lee, Nae-Eung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.459-459
    • /
    • 2012
  • Recently, the discharge of global warming gases in dry etching process of TFT-LCD display industry is a serious issue because perfluorocarbon compound (PFC) gas causes global warming effects. PFCs including CF4, C2F6, C3F8, CHF3, NF3 and SF6 are widely used as etching and cleaning gases. In particular, the SF6 gas is chemically stable compounds. However, these gases have large global warming potential (GWP100 = 24,900) and lifetime (3,200). In this work, we chose C3F6O gas which has a very low GWP (GWP100 = <100) and lifetime (< 1) as a replacement gas. This study investigated the effects of the gas flow ratio of C3F6O/O2 and process pressure in dual-frequency capacitively coupled plasma (CCP) etcher on global warming effects. Also, we compared global warming effects of C3F6O gas with those of SF6 gas during dry etching of a patterned positive type photo-resist/silicon nitride/glass substrate. The etch rate measurements and emission of by-products were analyzed by scanning electron Microscopy (SEM; HITACI, S-3500H) and Fourier transform infrared spectroscopy (FT-IR; MIDAC, I2000), respectively. Calculation of MMTCE (million metric ton carbon equivalents) based on the emitted by-products were performed during etching by controlling various process parameters. The evaluation procedure and results will be discussed in detail.

  • PDF

Fabrication of a Pressure Difference Type Gas Flow Sensor using ICP-RIE Technology (ICP-RIE 기술을 이용한 차압형 가스유량센서 제작)

  • Lee, Young-Tae;Ahn, Kang-Ho;Kwon, Yong-Taek;Takao, Hidekuni;Ishida, Makoto
    • Journal of the Semiconductor & Display Technology
    • /
    • v.7 no.1
    • /
    • pp.1-5
    • /
    • 2008
  • In this paper, we fabricated pressure difference type gas flow sensor using only dry etching technology by ICP-RIE(inductive coupled plasma reactive ion etching). The sensor's structure consists of a common shear stress type piezoresistive pressure sensor with an orifice fabricated in the middle of the sensor diaphragm. Generally, structure like diaphragm is fabricated by wet etching technology using TMAH, but we fabricated diaphragm by only dry etching using ICP-RIE. To equalize the thickness of diaphragm we applied insulator($SiO_2$) layer of SOI(Si/$SiO_2$/Si-sub) wafer as delay layer of dry etching. Size of fabricated diaphragm is $1000{\times}1000{\times}7\;{\mu}m^3$ and overall chip $3000{\times}3000{\times}7\;{\mu}m^3$. We measured the variation of output voltage toward the change of gas pressure to analyze characteristics of the fabricated sensor. Sensitivity of fabricated sensor was relatively high as about 1.5mV/V kPa at 1kPa full-scale. Nonlinearity was below 0.5%F.S. Over-pressure range of the fabricated sensor is 100kPa or more.

  • PDF

High density plasma etching of single crystalline $La_3Ga_5SiO_{14}$ for wide band high temperature SAW filter devices (광대역 고온용 SAW filter 소자용 $La_3Ga_5SiO_{14}$ 단결정의 고밀도 플라즈마 식각)

  • Cho, Hyun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.15 no.6
    • /
    • pp.234-238
    • /
    • 2005
  • Effects of plasma composition, ion flux and ion energy on the etch rate, surface morphology and near surface stoichiometry of a single crystalline $La_3Ga_5SiO_{14}$ wafer have been examined in $Cl_2/Ar$ inductively coupled plasma (ICP) discharges. Maximum etch rate ${\sim}1600{\AA}/min$ was achieved either at relatively high source power $({\sim}1000W)$ or high $Cl_2$ content conditions in $Cl_2/Ar$ discharges. The etched surfaces showed similar or better RMS roughness values than those of the unetched control sample and the near surface stoichiometry was found not to be affected by ICP etching.