• Title/Summary/Keyword: dry and wet thermal

Search Result 139, Processing Time 0.025 seconds

The Study on Wafer Cleaning Using Excimer Laser (엑사이머 레이저를 이용한 웨이퍼 크리닝에 관한 고찰)

  • 윤경구;김재구;이성국;최두선;신보성;황경현;정재경
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.743-746
    • /
    • 2000
  • The removal of contaminants of silicon wafers has been investigated by various methods. Laser cleaning is the new dry cleaning technique to replace wafer wet cleaning in the near future. A dry laser cleaning uses inert gas jet to remove contaminant particles lifted off by the action of a KrF excimer laser. A laser cleaning model is developed to simulate the cleaning process and analyze the influence of contaminant particles and experimental parameters on laser cleaning efficiency. The model demonstrates that various types of submicrometer-sized particles from the front sides of silicon wafer can be efficiently removed by laser cleaning. The laser cleaning is explained by a particle adhesion model. including van der Waals forces and hydrogen bonding, and a particle removal model involving rapid thermal expansion of the substrate due to the thermoelastic effect. In addition, the experiment of wafer laser cleaning using KrF excimer laser was conducted to remove various contaminant particles.

  • PDF

A Study on the Thermal Insulation Performance of Vacuum Insulation Panel Using Dry Processing Glass Fiber Core (건식 유리섬유 심재를 사용한 진공단열재의 단열특성에 관한 연구)

  • Yoo, Chae-Jung;Kim, Min-Cheol;Go, Seong-Seok
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.6
    • /
    • pp.121-128
    • /
    • 2019
  • There is a big move to build zero-energy buildings in the form of passive houses that reduce energy waste worldwide. Korea has set a goal of reducing its greenhouse gas emissions by 37% by 2030 through the activation of green buildings, such as strengthening the energy levels of new buildings and improving the energy efficiency of existing buildings. The use of insulation with high insulation performance is one of the key technologies to realize this, and vacuum insulation is the next generation insulation that blocks the energy flow of the building. In this study, we measured the bonding structure of dry and wet processing glass fiber core materials and compared the insulation performance of vacuum insulation panel. In addition, the insulation performance of vacuum insulation panel was measured according to the thickness of the laminated core. It can be confirmed that the lamination structure of the core and the lamination thickness are important factors for the heat insulating performance of the vacuum insulating panel.

A Study on the Temperature Reduction Effect of Street Green Area (도로변 가로녹지 유형이 기상에 미치는 영향)

  • Kim, Jeong-Ho;Choi, Won-Jun;Yoon, Yong-Han
    • Journal of Environmental Science International
    • /
    • v.26 no.12
    • /
    • pp.1363-1374
    • /
    • 2017
  • Global climate change caused by industrialization has caused abnormal weather conditions such as urban temperatures and tropical nights, urban heat waves, heat waves, and heavy rains. Therefore, the study tried to analyze climate conditions and weather conditions in the streets and analyze climate factors and meteorological factors that lead to inconvenience to citizens. In the case of trees, the overall temperature, surface temperature, solar irradiance, and net radiation were measured low, and the temperature was lower in the Pedestrian road than in roads. The dry bulb temperature, the black bulb temperature, and the wet bulb temperature for the thermal evaluation showed the same tendency. In the case of thermal evaluation, there was a similar tendency to temperature in WBGT, MRT, and UTCI, and varied differences between types. Although the correlation between the meteorological environment and the thermal environment showed a statistically significant significance, the difference between the measured items was not significant. The study found that the trees were generally pleasant to weather and thermal climate in the form of trees, and the differences were mostly documented.

A Study on Thermal Oxidation of 3C-SiC Thin-films Grown on Si(100) Wafer (Si(100) 기판 위에 성장된 3C-SiC 박막의 열산화에 관한 연구)

  • Chung, Yun-Sik;Ryu, Ji-Goo;Chung, Su-Young;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.407-410
    • /
    • 2002
  • Thermal oxidations of 3C-SiC thin-films grown on Si(100) by APCVD(atmospheric pressure chemical vapor deposition) were carried out. The oxidations of 3C-SiC were performed at $1100^{\circ}C$ for 1~6 hr in wet and dry $O_2$ ambient, respectively. Ellipsometry was used to determine the thickness and index of refraction of oxide films. The oxide thickness vs. the oxidation time follows the general relationship used for the thermal oxidation of Si. The surface roughness was analyzed by using AFM(atomic force microscopy). The surface roughness of oxidized 3C-SiC was rougher than before oxidation. The thermal oxide was found to be $SiO_2$ by XPS(X-ray photoelectron spectroscopy) analysis. Auger analysis showed them to be homogeneous with near stoichiometric composition.

  • PDF

Thermal Nitridation of Si by RF Induction Heating (고주파 유도 가열에 의한 Si의 열적질화)

  • 이용현;왕진석
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.9
    • /
    • pp.1386-1392
    • /
    • 1990
  • Characteristics of the direct thermal nitrided films by RF induction heating has been studied. The nitrided films on Si were prepared at 1000-1200\ulcorner in ammonia gas ambient. The nitrided films were analyzed by ellipsometry an Auger electron spectroscopy. I-V and C-V characteristics of MIS capacitors fabricated using nitrided film were investicated. The nitrided films were grown up mostly within initial thirty minutes and no significant growth was observed thereafter. Etch rates of films were about 1\ulcornermin in diluted HF (HF:H2O= 1:50). The nitrided films were resistant to dry and wet oxidations at temperatures below 1000\ulcorner and 900\ulcorner, respectively.

  • PDF

A selective formation of high-quality fully recessed oxide (양질의 FRO(fully recessed oxide)의 선택적 형성)

  • 류창우;심준환;이준희;이종현
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.7
    • /
    • pp.149-155
    • /
    • 1996
  • A new technique wasdeveloped which obtains selectively the htick fully recessed oxidized porous silicon layer (OPSL) with good dielectric property. The porous silicon layer was ocnverted to thick fully recessed oxide (FRO) with 3-step (1${\mu}$m, 1.5${\mu}$m, 1.8${\mu}$m) by multi-step thermal oxidation (after 400$^{\circ}$C, 1 hour by dry oxidation, 700$^{\circ}$C, 1 hour and then 1100$^{\circ}$C, 1 hour by wet oxidation). The breakdwon field of the FRO was about 2.5MV/cm and the leakage current was several pA ~ 100 pA in the range of 0 of 90 pF. The progress of oxidation of a porous silicon layer was studied by examining the infrared abosrption spectra. The refractive index (1.51) of the fRO, which was measured by ellipsometer, was comparable to that of the thermally grown silicon dioxide (1.46). The etching rate (1600${\AA}$/min) of the FRO was also almost equal to that of the thermal oxide.

  • PDF

Curing Behavior and Adhesion Performance of Urea-Melamine-Formaldehyde (UMF) Resin by Staged Addition of Melamine (멜라민 첨가 순서에 따른 UMF 접착제의 경화거동과 접착력의 영향)

  • Xu, Guang-Zhu;Eom, Young-Geun;Lee, Young-Kyu;Lim, Dong-Hyuk;Lee, Byoung-Ho;Kim, Hyun-Joong
    • Journal of Adhesion and Interface
    • /
    • v.10 no.2
    • /
    • pp.84-89
    • /
    • 2009
  • The objective of this research was to investigate the curing behavior and adhesion performance of urea-melamine-formaldehyde (UMF) resin for the four types of UMF-1, UMF-2, UMF-3, and UMF-4 which synthesized by the staged addition of melamine. Also, various network structures of these resin types were discussed based on their different curing behavior and adhesion performance. The curing behavior was evaluated by DMTA and thermal stability was checked by TGA. Adhesion performance was evaluated by dry and wet shear strengths and the pH value of each cured resin was checked to see its effect on the adhesion performance. The results indicated that the UMF-1 resin type by the addition of melamine initially with the urea and formaldehyde at the same F/(U+M) rate showed the lowest thermal stability, rigidity (${\Delta}E^{\prime}$), temperature of tan ${\delta}$ maximum ($T_{tan}\;_{\delta}$), and wet shear strength, and pH value of cured resin. In wet shear strength, however, the UMF-4 resin type appears to be slightly higher than UMF-1 resin type.

  • PDF

A study on the Dislocation-Free Shallow Trench Isolation (STI) Process (Dislocation-Free Shallow Trench Isolation 공정 연구)

  • Yoo, Hae-Young;Kim, Nam-Hoon;Kim, Sang-Yong;Lee, Woo-Sun;Chang, Eui-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.84-85
    • /
    • 2005
  • Dislocations are often found at Shallow Trench Isolation (STI) process after repeated thermal cycles. The residual stress after STI process often leads defect like dislocation by post STI thermo-mechanical stress. Thermo-mechanical stress induced by STI process is difficult to remove perfectly by plastic deformation at previous thermal cycles. Embedded flash memory process is very weak in terms of post STI thermo-mechanical stress, because it requires more oxidation steps than other devices. Therefore, dislocation-free flash process should be optimized.

  • PDF

Effect of Hybrid Yarn Structure Composed of PP/Tencel/Quick dry PET on the Physical Property of Fabric for High Emotional Garment (PP/Tencel/흡한속건PET/하이브리드 복합사 구조가 고감성 의류용 직물의 물성에 미치는 영향)

  • Kim, Hyun Ah;Son, Hwang;Kim, Seung Jin
    • Fashion & Textile Research Journal
    • /
    • v.17 no.3
    • /
    • pp.462-475
    • /
    • 2015
  • This paper investigated the characteristics of the physical properties of woven fabrics according to the yarn structure and fibre property. It was found that wicking property of woven fabrics made of sheath/core hybrid yarn were better than those of siro spun and siro-fil hybrid yarns, which was caused by platform for transport of moisture vapor by filaments on the core part of sheath core hybrid yarns. In drying property, the fabric specimen woven by PP/Tencel sheath core hybrid yarns as a warp and Coolmax/Tencel spun yarn as a weft showed quick drying property, which was caused by the sheath core hybrid yarn structure as drainage of water moisture and coolmax fibre characteristics as quick dry material. Concerning to breathability and thermal conductivity as heat transport phenomena, it was observed that breathability of fabrics woven with hybrid yarns such as sheath core and siro-fil in the warp and hi-multi filaments in the weft showed the lowest water vapor resistance, which was explained as due to for air gap in the fibres of the spun yarns to restrict the wet heat transport from perspiration vapor. Thermal conductivities of the fabrics woven with PET/Tencel siro-fil yarns in the weft and hybrid yarns such as sheath core and siro-fil in the warp revealed the highest values, which was observed as due to higher thermal conductivity of PET than PP and more contact point between fibres in the siro-fil and sheath core hybrid yarns.

Preparation of Wood Adhesives from the Rice Powder and pMDIs; Characterizations of Their Properties

  • Lee, Sang-Min;Joo, Ji-Hye;Lee, Hyang-Yeol
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.4
    • /
    • pp.607-615
    • /
    • 2015
  • To investigate the adhesion effect of various kinds and contents of polymeric methylene diphenyl diisocyanates (pMDIs) on adhesion performance, wood adhesives (A-1~5) were synthesized and characterized. As results, when the amount of pMDI increased in adhesives, the dry tensile strength was found to be proportionally increased sustaining at around $16.0{\sim}21.6kgf/cm^2$. The polyurethane (PU) resin, which used M11S as a source of pMDI showed the best wet tensile strength at $11.9kgf/cm^2$ and cyclic boil tensile strength at $8.1kgf/cm^2$, which satisfied the requirement of over $7kgf/cm^2$. Thermal properties of the rice powder (RP) based polyurethane resins were characterized by differential scanning calorimetry (DSC) and Thermal gravimetric analysis (TGA). Thermal stability of polyurethane resins increased to $250^{\circ}C$ with adding pMDIs. The more pMDI (M5S) was added to adhesive, the higher thermal stability of the resin was observed by TGA.