Curing Behavior and Adhesion Performance of Urea-Melamine-Formaldehyde (UMF) Resin by Staged Addition of Melamine

멜라민 첨가 순서에 따른 UMF 접착제의 경화거동과 접착력의 영향

  • Xu, Guang-Zhu (Department of Forest Products, College of Forest Science, Kookmin University) ;
  • Eom, Young-Geun (Department of Forest Products, College of Forest Science, Kookmin University) ;
  • Lee, Young-Kyu (Material Property Analysis Lab., National Instrumentation Center for Environmental Management Seoul National University) ;
  • Lim, Dong-Hyuk (Lab. of Adhesion & Bio-Composites, Program in Environmental Materials Science, Seoul National University) ;
  • Lee, Byoung-Ho (Lab. of Adhesion & Bio-Composites, Program in Environmental Materials Science, Seoul National University) ;
  • Kim, Hyun-Joong (Lab. of Adhesion & Bio-Composites, Program in Environmental Materials Science, Seoul National University)
  • Received : 2009.06.08
  • Accepted : 2009.06.22
  • Published : 2009.06.30

Abstract

The objective of this research was to investigate the curing behavior and adhesion performance of urea-melamine-formaldehyde (UMF) resin for the four types of UMF-1, UMF-2, UMF-3, and UMF-4 which synthesized by the staged addition of melamine. Also, various network structures of these resin types were discussed based on their different curing behavior and adhesion performance. The curing behavior was evaluated by DMTA and thermal stability was checked by TGA. Adhesion performance was evaluated by dry and wet shear strengths and the pH value of each cured resin was checked to see its effect on the adhesion performance. The results indicated that the UMF-1 resin type by the addition of melamine initially with the urea and formaldehyde at the same F/(U+M) rate showed the lowest thermal stability, rigidity (${\Delta}E^{\prime}$), temperature of tan ${\delta}$ maximum ($T_{tan}\;_{\delta}$), and wet shear strength, and pH value of cured resin. In wet shear strength, however, the UMF-4 resin type appears to be slightly higher than UMF-1 resin type.

Keywords

References

  1. A. Kandelbauer, A. Despres, A. Pizzi, and I. Taudes, J. Appl. Polym. Sci., 106, 2192 (2007). https://doi.org/10.1002/app.26757
  2. A. Pizzi and L. A. Panamgama, J. Appl. Polym. Sci., 58, 109 (1995). https://doi.org/10.1002/app.1995.070580112
  3. A. T. Mercer and A. Pizzi, J. Appl. Polym. Sci., 61, 1687 (1996). https://doi.org/10.1002/(SICI)1097-4628(19960906)61:10<1687::AID-APP8>3.0.CO;2-C
  4. B. Y. No and M. G. Kim, J. Appl. Polym. Sci., 93, 2559 (2004). https://doi.org/10.1002/app.20778
  5. B. Y. No and M. G. Kim, J. Appl. Polym. Sci., 97, 377 (2005). https://doi.org/10.1002/app.21759
  6. Hong, A. Pizzi, G. B. Du, and A. Despres. J. Appl. Polym. Sci., 100, 4842 (2006). https://doi.org/10.1002/app.22608
  7. L. A. Panangama and A. Pizzi, J. Appl. Polym. Sci., 59, 2055 (1996). https://doi.org/10.1002/(SICI)1097-4628(19960328)59:13<2055::AID-APP10>3.0.CO;2-Z
  8. L. Onic, V. Bucur, M. P. Ansell, A. Pizzi, X. Deglise, and A. Merlin, Int. J. Adhes. Adhes., 18, 89 (1998) https://doi.org/10.1016/S0143-7496(97)00049-3
  9. M. Higuchi, H. Shimokawa, and I. Sakata, J. Jap. Wood Res. Soc., 5. 25, 630 (1979)
  10. M. Properzi, A. Pizzi, and L. Uzielli, J. Appl. Polym. Sci., 81, 2821 (2001). https://doi.org/10.1002/app.1730
  11. S. Kim and H.-J. Kim, J. Adhes. Sci. Technol., 17, 1369 (2003). https://doi.org/10.1163/156856103769172797
  12. S. Kim, H.-J. Kim, H. S. Kim, Y. K. Lee, and H. S. Yang, J. Adhesion Sci. Technol., 20(8), 803 (2006) https://doi.org/10.1163/156856106777638671
  13. S. Kim and H.-J. Kim, Thermochimica Acta., 444(2), 134 (2006). https://doi.org/10.1016/j.tca.2006.03.009
  14. T. Hirata, S. Kawamoto, and A. Okuro, J. Appl. Polym. Sci., 42, 3147 (1991). https://doi.org/10.1002/app.1991.070421208