• Title/Summary/Keyword: drug modification

Search Result 148, Processing Time 0.024 seconds

Characterization of the active site and coenzyme binding pocket of the monomeric UDP- galactose 4'- epimerase of Aeromonas hydrophila

  • Agarwal, Shivani;Mishra, Neeraj;Agarwal, Shivangi;Dixit, Aparna
    • BMB Reports
    • /
    • v.43 no.6
    • /
    • pp.419-426
    • /
    • 2010
  • Aeromonas hydrophila is a bacterial pathogen that infects a large number of eukaryotes, including humans. The UDP-galactose 4'-epimerase (GalE) catalyzes interconversion of UDP-galactose to UDP-glucose and plays a key role in lipopolysaccharide biosynthesis. This makes it an important virulence determinant, and therefore a potential drug target. Our earlier studies revealed that unlike other GalEs, GalE of A. hydrophila exists as a monomer. This uniqueness necessitated elucidation of its structure and active site. Chemical modification of the 6xHis-rGalE demonstrated the role of histidine residue in catalysis and that it did not constitute the substrate binding pocket. Loss of the 6xHis-rGalE activity and coenzyme fluorescence with thiol modifying reagents established the role of two distinct vicinal thiols in catalysis. Chemical modification studies revealed arginine to be essential for catalysis. Site-directed mutagenesis indicated Tyr149 and Lys153 to be involved in catalysis. Use of glycerol as a cosolvent enhanced the GalE thermostability significantly.

Synthesis of Ketoconazole Derivatives

  • Ryu, Jae-Chun;Lee, Kwang-Jae;Lee, Sang-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.4
    • /
    • pp.460-466
    • /
    • 2003
  • For the drug master file (DMF) of ketoconazole, four impurities (1-4) contained in ketoconazole were synthesized. During the synthesis of 2, a new synthetic method of 1,4-dihydropyrazine was established. To oxidize the aminoalcohol (2j) to the aminal (2j-1), the standard Swern oxidation condition was modified to mask the nucleophilicity of the amino group temporarily using one equivalent of acetic acid. Derivative 3 was synthesized via regioselective bromination at the 2 position of the 4-aminophenol derivative (3a) using $Br_2$ in the presence of p-TsOH. The etherification of aryl bromide with the phenol derivative (1f) was accomplished by a modification of the general Cu-mediated reaction condition using excess 1f itself as a solvent at elevated temperature (190 ℃).

Chemical Modification of Rupestonic Acid and Preliminarily In Vitro Antiviral Activity Against Influenza A3 and B Viruses

  • Yong, Jian-Ping;Aisa, Haji Akber
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.4
    • /
    • pp.1293-1297
    • /
    • 2011
  • To improve the biological activities of rupestonic acid, 21 new rupestonic acid fatty ester derivatives (2a-2h) and aromatic ester derivatives (2i-2u) were synthesized and preliminarily evaluated for their anti-influenza activity in vitro by the national center for drug screening of China, using the Oseltamivir and Ribavirin as reference drugs. The results showed that 2l ($IC_{50}=0.5{\mu}mol/L$) exhibited potent anti-influenza $A_3$ viral activity among the synthesized compounds and was 10-fold more potent than that of the reference drug Oseltamivir ($IC_{50}=5.1{\mu}mol/L$).

Pharmacologic Activities of Saikosaponins(I) -Effects on Drug Metabolizing Enzymes Modification and Liver Toxicities due to Acetaminophen- (시호(柴胡) 사포닌류(Saikosaponins)의 약리작용(I) -Acetaminophen에 의한 약물대사계의 변화 및 간독성에 미친 영향-)

  • Lee, Jeong-Sik;Lee, Chung-Kyu;Choi, Jong-Won
    • Korean Journal of Pharmacognosy
    • /
    • v.24 no.1
    • /
    • pp.69-77
    • /
    • 1993
  • Saikosaponins, originally isolated from Bupleuri Radix, were reported to exhibit diverse biological activities especially concerning with liver function. To elucidate the mode of protective action of saikosaponins on liver injury due to the acetaminophen administration, effects on drug metabolizing enzymes system and some transferase activities were checked. As the result, activities of transferase were shown to be strengthened by saikosaponin treatments significantly.

  • PDF

Characterization and Modification of Low Molecular Water-Soluble Chitosan for Pharmaceutical Application

  • Jang, Mi-Kyeong;Nah, Jae-Woon
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.9
    • /
    • pp.1303-1307
    • /
    • 2003
  • The low molecular water-soluble chitosan nanoparticles (LMWSC-NPs) were prepared, which was modified with hydrophilic and hydrophobic moieties to evaluate the potential for pharmaceutics application. The synthesis of LMWSC-NPs was identified by FT-IR and $^1H$-NMR spectra. Also, we measured the photon correlation spectroscopy (PCS), transmission electron microscope (TEM) and atomic force microscope (AFM) to investigate the characteristics and morphology of the LMWSC-NPs. At the PCS measurement, the more increase the number of substitutive group, the more decrease the positive charge of LMWSC-NP surface. From the results of TEM and AFM, spherical morphologies were observed, and their sizes were 30-150 nm. Resultantly, LMWSC-NPs prepared in this experiment will be expected as a suitable device for the drug targeting system.

Management of Bleeding Induced by Tyrosine Kinase Inhibitor in Radioiodine Refractory Thyroid Cancer (방사성요오드 불응성 갑상선암에서 티로신키나아제 억제제 투여로 유발된 출혈 이상 반응 관리)

  • Shin, Dong Yeob
    • International journal of thyroidology
    • /
    • v.11 no.2
    • /
    • pp.71-74
    • /
    • 2018
  • Adverse events such as hemoptysis and gastrointestinal hemorrhage during tyrosine kinase inhibitor treatment are relatively rare, but the severity of the bleeding can be higher than other common adverse events. It is necessary to educate patients about its possibility so that they can be found early. In this case report of radioiodine refractory thyroid cancer patient, hemoptysis and gastrointestinal bleeding has occurred following lenvatinib administration. Drug interruption and dose modification and dose interruption were required in addition to management for bleeding itself. It is necessary to confirm the high risk of bleeding before the administration of tyrosine kinase inhibitors, and to appropriately control the follow-up interval and drug dosage accordingly.

Extracellular vesicles as novel carriers for therapeutic molecules

  • Yim, Nambin;Choi, Chulhee
    • BMB Reports
    • /
    • v.49 no.11
    • /
    • pp.585-586
    • /
    • 2016
  • Extracellular vesicles (EVs) are natural carriers of biomolecules that play central roles in cell-to-cell communications. Based on this, there have been various attempts to use EVs as therapeutic drug carriers. From chemical reagents to nucleic acids, various macromolecules were successfully loaded into EVs; however, loading of proteins with high molecular weight has been huddled with several problems. Purification of recombinant proteins is expensive and time consuming, and easily results in modification of proteins due to physical or chemical forces. Also, the loading efficiency of conventional methods is too low for most proteins. We have recently proposed a new method, the so-called exosomes for protein loading via optically reversible protein-protein interaction (EXPLORs), to overcome the limitations. Since EXPLORs are produced by actively loading of intracellular proteins into EVs using blue light without protein purification steps, we demonstrated that the EXPLOR technique significantly improves the loading and delivery efficiency of therapeutic proteins. In further in vitro and in vivo experiments, we demonstrate the potential of EXPLOR technology as a novel platform for biopharmaceuticals, by successful delivery of several functional proteins such as Cre recombinase, into the target cells.

Solid Phase Extraction of Celecoxib from Drug Matrix and Biological Fluids by Grafted Poly β-cyclodextrine/allyl Amine Magnetic Nano-particles

  • Kamari, Sahar;Panahi, Homayon Ahmad;Baimani, Nasim;Moniri, Elham
    • Korean Chemical Engineering Research
    • /
    • v.55 no.3
    • /
    • pp.287-295
    • /
    • 2017
  • Using nanotechnology, magnetic nanoparticles of iron oxide were produced via co-precipitation method and followed modification with organic compounds. In the next step, functionalized monomer was provided via coupling ${\beta}$-cyclodextrine and allylamine onto modified magnetic nanoparticles. These nanoparticles were used to establish the adsorption rate of celecoxib. Magnetic nanoparticles are modified by (3-mercaptopropyl)trimethoxysilane. Nano-adsorbent was characterized by analytical and spectroscopic methods, such as Fourier transform infrared spectroscopy, elemental analysis, thermo-gravimetric analysis, and transmission electron microscopy (TEM). Laboratory parameters, such as the kinetics of adsorption isotherms, pH, reaction temperature and capacity were optimized. Finally, by using this nano-adsorbent in the optimized condition, extraction of celecoxib from biological samples as urine, drug matrix and blood plasma was carried out by high performance liquid chromatography with sensitivity and high accuracy.

Synthesis of 4,5-substituted 3-alkoxy-6-allylthiopyridazine Derivatives (4,5-치환 3-alkoxy-6-allylthiopyridazine 유도체 합성)

  • 권순경
    • YAKHAK HOEJI
    • /
    • v.46 no.3
    • /
    • pp.155-160
    • /
    • 2002
  • Through a modification of allicin structure a disagreeable odor and chemical instability of allicin can be improved. 3-Alkoxy-6-allylthiopyridazine derivatives exhibit a superior effect for prevention and treatment of hepatic diseases induced by carbon tetrachloride and aflatoxin B1 and for prevention of human tissues from radiation. These compounds inhibit also efficiently SK-Hep-1 cell proliferation through induction of apoptosis. So another 4,5-mono- or di-substituted 3-alkyloxy-6-allylthiopyridazine derivatives were synthesized on purpose to find out SAR of allylthiopyridazine in hepatoprotective and hepatotherapeutic acitivitis and to develop more effective drug candidate.

Controlled Rrelease of Indomethacin using Biodegradable Polymer Microspheres (생분해성 고분자 미세구를 이용한 indomethacin의 방출제어)

  • Lim, Seung;Lee, Ki-Young;Lee, Moo-Sung;Choi, Chang-Nam;Kim, Young-Dae
    • KSBB Journal
    • /
    • v.16 no.5
    • /
    • pp.505-510
    • /
    • 2001
  • The preparation, characterization and drug release behaviour of drug(indomethacin) loaded Poly(L-lactic acid)(PLA), tarmarind acetate and levan acetate mircospheres were investigated. Hydrophobic tarmarind acetate and levan acetate were prepared by chemical modification of hydrophilic tarmaried gum and levan and microspheres were made by a solvent evaporation method. In the case of poly(L-lactic acid) microspheres, drug release rate was effected by polymer-drug ratios and drum release was sustained by increasing of polymer content. The yield of microspheres were effected by many factors and the mean size was below 1 $\mu$m, The IND release profiles from tarmarind acetate and levan acetate micropheres were more slightly less than ploy(L-lactic acid) microspheres.

  • PDF