• Title/Summary/Keyword: drug development

Search Result 2,580, Processing Time 0.03 seconds

Synthesis of Diacetoxy Acetal Derivatives of Santonin and their Enhancing Effects on HL-60 Leukemia Cell Differentiation

  • Kim, Seung-Hyun;Chung, Sun-Young;Kim, Tae-Sung;Choi, Bo-Gil
    • Archives of Pharmacal Research
    • /
    • v.29 no.1
    • /
    • pp.40-45
    • /
    • 2006
  • Several diacetoxy acetal analogues have been synthesized from santonin and assessed for their ability of inducing or enhancing the differentiation of human HL-60 leukemia cells. The compounds themselves had little effect on HL-60 cell differentiation. However, three analogues, 2a, 3a, and 5b, synergistically enhanced 1,25-dihydroxyvitamin $D_3[1,25-(OH)_2D_3]-induced$ HL-60 cell differentiation when combined with 5 nM of dihydroxyvitamin $D_3[1,25(OH)_2O_3]$, a well-known differentiation inducer. Especially, the compound 5b profoundly enhanced the $1,25-(OH)2O_3]-induced$ HL-60 cell differentiation.

Total Synthesis of Licochalcone E

  • Yoon, Goo;Liu, Zhiguo;Jeong, Hee-Jin;Cheon, Seung-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.12
    • /
    • pp.2959-2961
    • /
    • 2009
  • Total synthesis of (${\pm}$)-licochalcone E (1), an allyl retrochalcone isolated from roots of Glycyrrhiza inflata, has been achieved from 4-tetrahydropyranyloxyacetophenone (7) with (E)-2-methoxy-4-(2-methyl-2-butenyloxy)benzaldehyde (6) or (Z)-2-methoxy-4-(2-methyl-2-butenyloxy)-benzaldehyde (11) through a convergent strategy involving aldol condensation and Claisen rearrangement as key steps.

Microbial Transformation of Isoxanthohumol, a Hop Prenylflavonoid

  • Kim, Hyun-Jung;Kang, Min-Ah;Lee, Ik-Soo
    • Natural Product Sciences
    • /
    • v.14 no.4
    • /
    • pp.269-273
    • /
    • 2008
  • Microbial transformation of isoxanthohumol (1), a prenylated flavanone from hops, has resulted in the production of a pair of glucosylated derivatives. The structures of these compounds were elucidated to be (2S)-5-methoxy-8-prenylnaringenin 7-O-${\beta}$-D-glucopyranoside (2) and (2R)-5-methoxy-8-prenylnaringenin 7-O-${\beta}$-Dglucopyranoside (3) based on the spectroscopic analyses.

The Development of u-Drug Cap based on NFC for Medication Information Management (복약 정보 관리를 위한 NFC기반 u-Drug Cap 개발)

  • Yoon, Taebok;Lee, Jong-Hee;Lee, Kwang-Hyoung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.2165-2171
    • /
    • 2015
  • Due to the development of improved living conditions and medical technology in recent periodic taking drugs is increasing through the outpatient rather than inpatient hospital care. Particularly in the case of patients suffering from geriatric diseases. This geriatric patients should have more attention to the taking medication management because it must keep the medication period. In this paper, we propose and describe an taking medicine information service system for the period and stable taking medicine in patients using the NFC-based u-Drug Cap and technology development and system test results. The developed system is through proper taking medicine information and alarm of geriatric patients or elderly patients. The patient's health can be maintained by preventing not taking and over taking of medicine.

Stability of 5-FU and Tegafur in Biological Fluids of Rats (흰쥐 생체시료 중 5-플루오로우라실 및 테가푸르의 안정성)

  • Jang, Ji-Hyun;Park, Jong-Kook;Kang, Jin-Hyoung;Chung, Suk-Jae;Shim, Chang-Koo;Kuh, Hyo-Jeong
    • Journal of Pharmaceutical Investigation
    • /
    • v.34 no.3
    • /
    • pp.161-168
    • /
    • 2004
  • 5-Fluorouracil (5-FU) is an antimetabolite anticancer agent active against many types of solid tumors. Tegafur (TF), a prodrug of 5-FU, is frequently used in combination with uracil as dihydropyrimidine dehydrogenase (DPD) inhibitory fluoropyrimidine. We studied the stability of 5-FU and TF in biological fluids of rats and determined their bioavailability (BA) and excretion into bile, and urine. The drug concentrations were analyzed by an HPLC method. At room temperature, there was a 14-30% decrease in the concentration of 5-FU and TF in bile, urine, and plasma specimen at 10 and $100\;{\mu}g/ml$ over 240 min. No significant difference was noted among the sample types or between two different concentrations of 10 and $100{\mu}g/ml$. The decrease in drug concentration was significantly less in samples kept on ice (6-12%) for both drugs. These data indicate that biological fluid samples containing 5-FU or TF in plasma, urine, or bile should be placed on ice during the sample collection. Following these storage guidelines, samples were collected after administration 50 mg/kg of each drug via i.v. or oral route. BA was 1.5 folds greater for TF (60%) than that of 5-FU (42%). Approximately 0.52 and 3.3% of the i.v. doses of 5-FU and TF was excreted into bile, respectively. Renal clearance of 5-FU was about 16% of its total body clearance. These results suggest that instability of 5-FU and TF in biological fluids should be considered in pharmacokinetic or pharmacogenomic studies.

Development of Mining model through reproducibility assessment in Adverse drug event surveillance system (약물부작용감시시스템에서 재현성 평가를 통한 마이닝 모델 개발)

  • Lee, Young-Ho;Yoon, Young-Mi;Lee, Byung-Mun;Hwang, Hee-Joung;Kang, Un-Gu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.3
    • /
    • pp.183-192
    • /
    • 2009
  • ADESS(Adverse drug event surveillance system) is the system which distinguishes adverse drug events using adverse drug signals. This system shows superior effectiveness in adverse drug surveillance than current methods such as volunteer reporting or char review. In this study, we built clinical data mart(CDM) for the development of ADESS. This CDM could obtain data reliability by applying data quality management and the most suitable clustering number(n=4) was gained through the reproducibility assessment in unsupervised learning techniques of knowledge discovery. As the result of analysis, by applying the clustering number(N=4) K-means, Kohonen, and two-step clustering models were produced and we confirmed that the K-means algorithm makes the most closest clustering to the result of adverse drug events.

Bioequivalence of LG Cilostazol Tablet to Pletaal Tablet (Cilostazol 100 mg) (프레탈 정(실로스타졸 100 mg)에 대한 엘지실로스타졸 정의 생물학적 동등성)

  • Cho, Hea-Young;Lim, Dong-Koo;Shin, Sang-Chul;Moon, Jai-Dong;Lee, Yong-Bok
    • Korean Journal of Clinical Pharmacy
    • /
    • v.11 no.1
    • /
    • pp.7-12
    • /
    • 2001
  • Cilostazol has both antithrombotic and cerebral vasodilating effects, and one of the mechanism is the selective inhibition of platalet cyclic AMP phosphodiesterase. Bioequivalence of two cilostazol tablets, the $Pletaal^{TM}$ (Korea Otsuka Pharmaceutical Co.) and the LG $Cilostazol^{TM}$ (LG Chemical Co.), was evaluated according to the guidelines of Korea Food and Drug Administration (KFDA). Sixteen normal male volunteers ($20\sim29$ years old) were randomly divided into two groups and a randomized $2\times2$ cross-over study was employed. After oral administration of $Pletaal^{TM}$ or LG $Cilostazol^{TM}$ tablet (100 mg cilostazol), blood samples were taken at predetermined time intervals and the serum cilostazol concentrations were determined using an HPLC method with UV/VIS detector. The pharmacokinetic parameters $(AUC_t,\;C_{max}\;and\;T_{max})$ were calculated and ANOVA was utilized for the statistical analysis. The results showed that the differences in AUCt, C_{max} and Tmax between two tablets based on the $Pletaal^{TM}$ tablet were $-5.39\%,\;2.32\%\;and\;4.26\%$, respectively. The powers (1-${\beta}$) for $AUC_t,\;C_{max}\;and\;T_{max}\;were\;83.81\%,\;96.02\%\;and\;91.04%$, respectively. Minimum detectable differences ($\Delta$) and $90\%$ confidence intervals were all less than $\pm20\%$. All these parameters met the criteria of KFDA for bioequivalence, indicating that LG $Cilostazol^{TM}$ tablet is bioequivalent to $Pletaal^{TM}$ tablet.

  • PDF

Inhibition of p90RSK activation sensitizes triple-negative breast cancer cells to cisplatin by inhibiting proliferation, migration and EMT

  • Jin, Yujin;Huynh, Diem Thi Ngoc;Kang, Keon Wook;Myung, Chang-Seon;Heo, Kyung-Sun
    • BMB Reports
    • /
    • v.52 no.12
    • /
    • pp.706-711
    • /
    • 2019
  • Cisplatin (Cis-DDP) is one of the most widely used anti-cancer drugs. It is applicable to many types of cancer, including lung, bladder, and breast cancer. However, its use is now limited because of drug resistance. p90 ribosomal S6 kinase (p90RSK) is one of the downstream effectors in the extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) pathway and high expression of p90RSK is observed in human breast cancer tissues. Therefore, we investigated the role of p90RSK in the Cis-DDP resistance-related signaling pathway and epithelial-mesenchymal transition (EMT) in breast cancer cells. First, we discovered that MDA-MB-231 cells exhibited more Cis-DDP resistance than other breast cancer cells, including MCF-7 and BT549 cells. Cis-DDP increased p90RSK activation, whereas the inactivation of p90RSK using a small interfering RNA (siRNA) or dominant-negative kinase mutant plasmid overexpression significantly reduced Cis-DDP-induced cell proliferation and migration via the inhibition of matrix metallopeptidase (MMP)2 and MMP9 in MDA-MB-231 cells. In addition, p90RSK activation was involved in EMT via the upregulation of mRNA expression, including that of Snail, Twist, ZEB1, N-cadherin, and vimentin. We also investigated NF-κB, the upstream regulator of EMT markers, and discovered that Cis-DDP treatment led to NF-κB translocation in the nucleus as well as its promoter activity. Our results suggest that targeting p90RSK would be a good strategy to increase Cis-DDP sensitivity in triple-negative breast cancers.

Characterization of intracellular Ca2+ mobilization in gefitinib-resistant oral squamous carcinoma cells HSC-3 and -4

  • Kim, Mi Seong;Kim, Min Seuk
    • International Journal of Oral Biology
    • /
    • v.46 no.4
    • /
    • pp.176-183
    • /
    • 2021
  • Oral squamous cell carcinoma (OSCC) metastasis is characterized by distant metastasis and local recurrence. Combined chemotherapy with cisplatin and 5-fluorouracil is routinely used to treat patients with OSCC, and the combined use of gefitinib with cytotoxic drugs has been reported to enhance the sensitivity of cancer cells in vitro. However, the development of drug resistance because of prolonged chemotherapy is inevitable, leading to a poor prognosis. Therefore, understanding alterations in signaling pathways and gene expression is crucial for overcoming the development of drug resistance. However, the altered characterization of Ca2+ signaling in drug-resistant OSCC cells remains unclear. In this study, we investigated alterations in intracellular Ca2+ ([Ca2+]i) mobilization upon the development of gefitinib resistance in human tongue squamous carcinoma cell line (HSC)-3 and HSC-4 using ratiometric analysis. This study demonstrated the presence of altered epidermal growth factor- and purinergic agonist-mediated [Ca2+]i mobilization in gefitinib-resistant OSCC cells. Moreover, Ca2+ content in the endoplasmic reticulum, store-operated calcium entry, and lysosomal Ca2+ release through the transient receptor potential mucolipin 1, were confirmed to be significantly reduced upon the development of apoptosis resistance. Consistent with [Ca2+]i mobilization, we identified modified expression levels of Ca2+ signaling-related genes in gefitinib-resistant cells. Taken together, we propose that the regulation of [Ca2+]i mobilization and related gene expression can be a new strategy to overcome drug resistance in patients with cancer.

Anxiolytic effect of Korean Red Ginseng through upregulation of serotonin and GABA transmission and BDNF expression in immobilized mice

  • Bui, Bich Phuong;Nguyen, Phuong Linh;Do, Ha Thi Thu;Cho, Jungsook
    • Journal of Ginseng Research
    • /
    • v.46 no.6
    • /
    • pp.819-829
    • /
    • 2022
  • Background: Anxiolytic properties of Korean Red Ginseng (KRG) have been previously reported. However, the exact mechanism(s) of action remains to be elucidated. The present study investigated the effect of KRG on immobilization-induced anxiety-like behaviors in mice and explored the involvement of the serotonin and GABA systems and BDNF in the anxiolytic action. Methods: Mice were orally administered with KRG (200 mg/kg/day) for 4 weeks and immobilized once daily for 2 h. p-Chlorophenylalanine (p-CPA) was intraperitoneally injected on day 22-28, and flumazenil or bicuculline was injected on day 25-28. After behavioral evaluations, brains were dissected for biochemical analyses. Results: KRG improved immobilization-induced anxiety-like behaviors in mice, as assessed by the elevated plus maze (EPM) and marble burying tests (MBT). The anxiolytic effect of KRG was comparable to that of fluoxetine, a reference drug clinically used for anxiety disorders. A serotonin synthesis inhibitor, p-CPA, blocked the effect of KRG in the EPM and MBT, indicating the requirement of serotonin synthesis for anxiolytic action. In addition, the anxiolytic effect of KRG was inhibited by bicuculline (a GABAA antagonist) in MBT, implying the involvement of GABA transmission. Western blotting analyses revealed that KRG upregulated the expression of tryptophan hydroxylase and GABAA receptor in the brain, which was blocked by p-CPA. Enhanced BDNF expression by KRG in the hippocampus was also indicated to mediate the anxiolytic action of KRG in immobilized mice. Conclusion: KRG exhibited the anxiolytic effect in immobilized mice by multiple mechanisms of action, involving enhanced serotonin and GABA transmissions and BDNF expression.