• Title/Summary/Keyword: driver electronics

Search Result 836, Processing Time 0.027 seconds

A study on gate driver with Boot-strap chain to drive Multi-level PDP driver application (Multi-level을 사용한 PDP 구동회로를 위한 Gate driver 의 Boot-strap chain 에 관한 연구)

  • Nam, Won-Seok;Kim, Jun-Hyoung;Song, Suk-Ho;Roh, Chung-Wook;Hong, Sung-Soo;SaKong, Suk-Chin
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.99-101
    • /
    • 2005
  • A gate driver with Boot-strap chain is proposed to drive Multi-level PDP sustain switches. The proposed gate driver uses only one boot-strap capacitor and one diode per each MOSFETs switch without floating power supply. By adoption of this gate driver circuits, the size, weight and the cost of the drivel board can be reduced.

  • PDF

Driver electronics for commercialization of emerging display technologies

  • Wai-Yan, Stephen
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.298-302
    • /
    • 2006
  • Driver electronics for emerging display technologies are presented for OLED's, microdisplays, electrophoretic displays & bi-stable LCD's. Key factors for commercialization of these technologies are derived from the experience of the LCD's, including driver IC designs, wafer and assembly processes & applications.

  • PDF

Trends on Personalization in Advanced Driver Assistance Systems (운전자 맞춤형 첨단 운전자 보조 시스템 기술 동향)

  • Kim, D.H.;Jang, B.T.;Shin, S.W.
    • Electronics and Telecommunications Trends
    • /
    • v.33 no.4
    • /
    • pp.61-69
    • /
    • 2018
  • Driver-specific technology in the automotive field has been commercialized for vehicle accessories, driver memory sheets, and side mirrors. In recent years, the demand for customized technology has expanded to include the user interface of an infotainment system (Infotainment System) and advanced driver support system (Advanced Driver Assistance System), and customized technologies for drivers have been studied. Therefore, this article describes the driver-tailored technology trends being studied in these fields, and examines the major research issues related to future driver-tailored technologies in the automotive field.

Cost-effective single board PDP sustaining driver with dual resonant method

  • Lim, Hyun-Muk;Eom, Cheol-Hwan;Lee, Jun-Young
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.446-448
    • /
    • 2008
  • A new plasma display panel sustaining driver using single side sustaining technique with the dual resonant method is proposed. Since this circuit enables to reduce switches in energy recovery circuit with keeping voltage stress like that of prior circuit, it can be low cost circuit comparing with a conventional driver. To integrate sustain function into one side with single power source in the driver, a charge pump method is adopted to make negative sustaining voltage and achieve dual resonant energy recovery on sustaining modes.

  • PDF

10Gbps Driver Design with Pre-Emphasis Functionality (Pre-Emphasis 기능을 갖는 10Gbps 드라이버의 설계)

  • Lee, Woo-Kwan;Rim, Woo-Jin;Kim, Soo-Won
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.691-694
    • /
    • 2005
  • This paper proposed 10Gbps driver with pre-emphasis for high speed transmitter. the proposed driver increase bandwidth using Ft doubler method and design driver block and pre-emphasis block in together. Pre-emphasis functionality confirmed to control VDS of current source o driver, not to control slew rate of termination resistor. The proposed driver is designed in a 1.5V/0.13um 1-poly, 5-metal CMOS mixed-signal process.

  • PDF

Design of Integrated a-Si:H Gate Driver Circuit with Low Noise for Mobile TFT-LCD

  • Lee, Yong-Hui;Park, Yong-Ju;Kwag, Jin-Oh;Kim, Hyung-Guel;Yi, Jun-Sin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.822-824
    • /
    • 2007
  • This paper investigated a gate driver circuit with amorphous silicon for mobile TFT-LCD. In the conventional circuit, the fluctuation of the off-state voltage causes the fluctuation of gate line voltages in the panel and then image quality becomes worse. Newly designed gate driver circuit with dynamic switching inverter and carry out signal reduce the fluctuation of the off-state voltage because dynamic switching inverter is holding the off-state voltage and the delay of carry signal is reduced. The simulation results show that the proposed a-Si:H gate driver has low noise and high stability compared with the conventional one.

  • PDF

A Study on Gate driver with Boot-strap chain to Drive Multi-level PDP Driver Application (Multi-level PDP 구동회로를 위한 Gate driver의 Boot-strap chain에 관한 연구)

  • Nam, Won-Seok;Hong, Sung-Soo;SaKong, Suk-Chin;Roh, Chung-Wook
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.2
    • /
    • pp.120-126
    • /
    • 2006
  • A gate driver with Boot-strap chain is proposed to drive Multi-level PDP sustain switches. The proposed gate driver uses only one boot-strap capacitor and one diode per each MOSFETs switch without floating power supply. By adoption of this gate driver circuits, the size, weight and the cost of the driver board can be reduced.

A MOSFET's Driver Applied to High-frequency Switching with Wide Range of Duty Cycles

  • Zhang, Zhao;Xie, Shaojun
    • Journal of Power Electronics
    • /
    • v.15 no.5
    • /
    • pp.1402-1408
    • /
    • 2015
  • A MOSFET's gate driver based on magnetic coupling is investigated. The gate driver can meet the demands in applications for wide range of duty cycles and high frequency. Fully galvanic isolation can be realized, and no auxiliary supply is needed. The driver is insensitive to the leakage inductor of the isolated transformer. No gate resistor is needed to damp the oscillation, and thus the peak output current of the gate driver can be improved. Design of the driving transformer can also be made more flexible, which helps to improve the isolation voltage between the power stage and the control electronics, and aids to enhance the electromagnetic compatibility. The driver's operation principle is analyzed, and the design method for its key parameters is presented. The performance analysis is validated via experiment. The disadvantages of the traditional magnetic coupling and optical coupling have been conquered through the investigated circuit.

Operation of NMOSFET-only Scan Driver IC for AC PDP (NMOSFET으로 구성된 AC PDP 스캔 구동 집적회로의 동작)

  • 김석일;정주영
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.7
    • /
    • pp.474-480
    • /
    • 2003
  • We designed and tested a new scan driver output stage. Compared to conventional CMOS structured scan driver IC′s, the new NMOSFET-only scan driver circuit can reduce the chip area and therefore, the chip cost considerably. We confirmed the circuit operation with open drain power NMOSFET IC′s by driving 2"PDP test panel. We defined critical device parameters and their optimization methods lot the best circuit performance.

Cost-effective Single Board PDP Sustaining Driver with Dual Resonant Method

  • Lee, Jun-Young
    • Journal of Power Electronics
    • /
    • v.9 no.1
    • /
    • pp.93-99
    • /
    • 2009
  • A new plasma display panel sustaining driver using single side sustaining technique with a dual resonant method is proposed in this paper. Since this circuit enables to keep device voltage stress same as the prior circuit, it can be a low cost circuit compared to a conventional driver. To integrate the sustaining function into one side with a single power source in the driver, a charge pump method is adopted to make negative sustaining voltage and to achieve dual resonant energy recovery on the sustaining modes.