• Title/Summary/Keyword: drive

Search Result 8,025, Processing Time 0.033 seconds

Drive Characteristics of SRM for EPS (EPS용 SRM의 운전특성)

  • Kim Bong-Chul;Moon Jea-Won;Park Han-Woong;Ahn Jin-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2003.11a
    • /
    • pp.190-192
    • /
    • 2003
  • This paper presents a design and characteristics analysis of an SRM drive for EPS application. A rack mounted EPS system is considered in this paper. In the unrestricted design conditions, motor parameters are determined for sufficient torque and speed. For the smooth torque generation and simple circuit of power system, 12/8 motor drive is considered. With FEM and magnetic circuit analysis, redesigned motor is simulated to meet the requirement of specifications. Effectiveness of the suggested SRM drive for EPS application is verified by redesigned motor drive tests.

  • PDF

Performance Enhancement of Sensorless Drive for Brushless DC Motors using Digital Filter (디지틀 필터를 이용한 브러시리스 직류 전동기용 센서리스 드라이브의 성능 향상에 관한 연구)

  • Yeo, Hyeong-Gi;Kim, Tae-Hyeong;Park, Jeong-Bae;Lee, Gwang-Un;Yu, Ji-Yun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.2
    • /
    • pp.63-68
    • /
    • 1999
  • This pper describes a digital sensorless drive of permanent magnet brushless DC motors. In order to detect in real time the rotor positions of which Emf becomes zero, terminal voltages are sampled during PWM duty cycle. This method generates detection error in indirect sensed position, which is the harmonic component of PWM frequency. In this paper, the drive adopted Butterworth low pass filter for rejection of the sensing error and for accurate estimation of commutation time. Analytical design process of the digital filter is proposed and the experimental results show that the performance of the proposed sensorless drive is superior to that of the sensorless drives without filterint.

  • PDF

A Study on Ultra Precision Rotational Device Using Smooth Impact Drive Mechanism (스무즈 임팩트 구동 메커니즘을 이용한 초정밀 회전장치에 관한 연구)

  • Lee, Sang-Uk;Jeon, Jong-Up
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.4
    • /
    • pp.140-147
    • /
    • 2008
  • This paper represents an ultra precision rotational device where the smooth impact drive mechanism (SIDM) is utilized as driving mechanism. Linear motions of piezoelectric elements are converted to the rotational motion of disk by frictional forces generated between the rotational disk and the friction part that is attached to the piezoelectric element. This device was designed to drive the rotational disk using slip-slip motion mechanism instead of stick-slip motion mechanism occurred in conventional impact drive mechanism. Experimental results show that the angular velocity is increased in proportion to the magnitude and frequency of supplied voltage to piezoelectric element and decreased as the preload is increased. In our device, the smooth rotational motion was obtained when the driving frequency has been reached to 500Hz under the driving voltage of 100V.

Structured Representation of Design Information for Gear Drives in XML (XML을 이용한 기어장치 설계정보의 구조적 표현)

  • 정태형;안준영
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.392-397
    • /
    • 2000
  • A methodology is proposed to share the design information of a gear drive using XML (eXtensible Markup Language). XML is the standard language of the next generation and can be used as a neutral and unique format shared by various Web applications. Since XML is a platform-independent meta-markup language, it is possible to reduce the additional programming efforts for Web applications by using the standardization of technical terminologies. In this study, the structure of design information about gears, shafts, keys and bearings in a gear drive has been made and the terminologies used in the gear drive design process have been authored. The XML DTD(Data Type Definition) for the gear drive design has been declared and the usage of the XML application has been shown.

  • PDF

A Study on the Focusing Actuator of Ultra Small Optical Drive (초소형 광드라이브용 포커싱 액츄에이터 설계 연구)

  • 손도현;홍삼열;김진아;김영중;최인호;김진용
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.234-238
    • /
    • 2003
  • Ultra small optical drive or PCMCIA type needs a focusing actuator because or applying Blue Laser and enhancing compatibility according to disk physical specification. Based on this need, this paper presents a novel focusing actuator adapted for ultra small optical drive of PCMCIA type. The focusing actuator using Lorenz force generated consists of coil, magnets and plate springs of pivoting. The design issues of the focusing actuator are the flexibility to focus direction, the rigidity to track direction and the higher natural mode of the moving part. For settling these Issues, this paper present mechanical design, computer simulations and test results of the realized focusing actuator. Finally, suitability and usefulness of the focusing actuator was demonstrated by the comparison of simulations and test results in a view of the possibility adapted for ultra small optical drive.

  • PDF

Dynamic Analysis of an Optical Disk Drive with Dynamic Vibration Absorber (동흡진기를 채용한 광 디스크 드라이브의 동적 해석)

  • 김남웅;김국원;황효균;김동규;이진우;김외열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.867-870
    • /
    • 2002
  • In high-speed optical disk drive, the excitation caused by rotation of a mass-unbalanced disk is a major source of vibration. The vibration can be a disturbance to the servo system, which is sufficient to cause severe failures in the reading and writing process. The vibration also causes users to feel unpleasantness. The vibration reduction is therefore essential for the reliable operation of optical disk drive. One of the approaches to reduce the vibration is a dynamic vibration absorber (DVA). In this paper, we analyze the dynamic behavior of $DVD\pmRW$ combo drive system with DVA through 12_dof rigid multi-body dynamic model. The effective location and the optimal frequency ratio are obtained from the analysis.

  • PDF

Damage of P/U by Crash in the Optical Disk Drive (광 디스크 드라이브의 P/U 낙하 추돌 거동)

  • 황효균;김남웅;이동호;이진우;김외열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.958-961
    • /
    • 2002
  • The optical disk drive is a basic option on the PC now. So the lower price and higher read/write speed goods are now on market. These trends make many difficulties to produce more reliable drives, comparing when they are treated as high price stuff. In mechanical terms, the lower price and higher read/write speed drive make higher vibration and noise, lower stiffness, even severe fracture of cheap and low quality disk, problems. Due to the internal crash of P/U inside of the drive, the failure of drives, inferior drives, increase more and more by the careless transportation and the originated low stiffness parts. This report is the introduction of the FE simple model to decrease the internal P/U crash problems, and the results.

  • PDF

A Study on the Design of Rubber Mount for Anti-vibration of an Optical Disk Drive Considering the Dimensional Tolerance (치수공차가 고려된 광디스크 드라이브의 방진마운트 설계에 관한 연구)

  • 김국원;김남웅
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.9
    • /
    • pp.661-667
    • /
    • 2002
  • With the increase of storage density, high rotational speed and high access technologies in optical disk drive, mechanical issues, mainly noise and vibration, become critical. Up to now the researches of rubber mount for anti-vibration focused on how to calculate the static and the dynamic stiffness of rubber mount and loaned out consideration of the dimensional tolerance of rubber mount for anti-vibration. This paper presents the effects of dimensional tolerance of rubber mount for anti-nitration on the dynamic characteristics of optical disk drive by finite element analysis and dynamic test. The relation between dimensional tolerance and dynamic characteristics of optical disk drive is observed and discussed.

Vibration Reduction of an Optical Disk Drive with a Dynamic Vibration Absorber (동흡진기를 사용한 광 디스크 드라이브의 진동저감)

  • Kim, Nam-Woong;Sin, Hyo-Chol;Kim, Kug-Weon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.5 s.110
    • /
    • pp.529-536
    • /
    • 2006
  • In high-speed optical disk drive, the excitation caused by rotation of a mass-unbalanced disk is a major source of vibration. The vibration can be a disturbance to the servo system, which is sufficient to cause severe failures in the reading and writing process. The vibration also causes users to feel unpleasantness. The vibration reduction is therefore essential for the reliable operation of optical disk drive. One of the approaches to reduce the vibration is a dynamic vibration absorber(DVA). In this paper, we analyze the dynamic behavior of $DVD{\pm}RW$ combo drive system with DVA through 12-dof rigid multi-body dynamic model. The effective location and the optimal frequency ratio for the DVA are obtained from the analysis. The DVA are fabricated based on the analysis and its usefulness is confirmed.

A Study of the Control Logic Development of Driveability Improvement in Vehicle Acceleration Mode (차량 급가속시 운전성 향상을 위한 제어로직 개선에 관한 연구)

  • 최윤준;송해박;이종화;조한승;조남효
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.101-116
    • /
    • 2002
  • Modern vehicles require a high degree of refinement, including good driveability to meet customer demands. Vehicle driveability, which becomes a key decisive factor for marketability, is affected by many parameters such as engine control and the dynamic characteristics in drive lines. Therefore, Engine and drive train characteristics should be considered to achieve a well balanced vehicle response simultaneously. This paper describes analysis procedures using a mathematical model which has been developed to simulate spark timing control logic. Inertia mass moment, stiffness and damping coefficient of engine and drive train were simulated to analyze the effect of parameters which were related vehicle dynamic behavior. Inertia mass moment of engine and stiffness of drive line were shown key factors for the shuffle characteristics. It was found that torque increase rate, torque reduction rate and torque recovery timing and rate influenced the shuffle characteristics at the tip-in condition for the given system in this study.