• Title/Summary/Keyword: drinking water distribution pipe

Search Result 39, Processing Time 0.026 seconds

A study on the removal of particulate matters using unidirectional flushing (단방향 플러싱에 의한 입자성 물질의 제거에 관한 연구)

  • Kim, Dooil;Cheon, Subin;Hyun, Inhwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.3
    • /
    • pp.371-380
    • /
    • 2015
  • Particulate matters in a water distribution system are main causes of turbidity and discoloration of tap water. They could be removed by conventional or uni-directional flushing in a water distribution system. The behaviors and required flow velocity of particles are not well known for their flushing. A model water main and hydrant were made from transparent acrylic pipe of 30mm and 16mm in diameter, respectively. We analyzed the effect of flushing velocity, particle density, and particle diameter. We found that the existence of break-though velocities at which particles begin to be removed, and which are affected by their physical properties. The removal efficiencies seemed to be influenced by resuspension capabilities related to their upward movement from the bottom. Heavy particles like scale were hard to remove through upflow hydrant because the falling velocity, calculated using Stokes' law, was higher. Particle removal efficiencies of upward hydrant and downward drain showed minor differences. Additionally, the length between hydrant and control valve affected flushing efficiency because the particulate matters were trapped in this space by inertia and recirculating flow.

Effect of Distribution System Materials and Water Quality on Heterotrophic Plate Counts and Biofilm Proliferation

  • CHANG , YOUNG-CHEOL;JUNG, KWEON
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.6
    • /
    • pp.1114-1119
    • /
    • 2004
  • The biofilms on pipe walls in water distribution systems are of interest since they can lead to chlorine demand, coliform growth, pipe corrosion, and water taste and odor problems. As such, the study described in this paper is part of an AWWARF and Tampa Bay Water tailored collaboration project to determine the effect of blending different source waters on the water quality in various distribution systems. The project was based on 18 independent pilot distribution systems (PDS), each being fed by a different water blend (7 finished waters blended in different proportions). The source waters compared were groundwater, surface water, and brackish water, which were treated in a variety of pilot distribution systems, including reverse osmosis (RO) (desalination), both membrane and chemical softening, and ozonation-biological activated carbon (BAC), resulting in a total of 7 different finished waters. The observations from this study consistently demonstrated that unlined ductile iron was more heavily colonized by a biomass than galvanized steel, lined ductile iron, and PVC (in that order) and that the fixed biomass accumulation was more influenced by the nature of the supporting material than by the water quality (including the secondary residual levels). However, although the bulk liquid water cultivable bacterial counts (i.e. heterotrophic plate counts or HPCs) did not increase with a greater biofilm accumulation, the results also suggested that high HPCs corresponded to a low disinfectant residual more than a high biofilm inventory. Furthermore, temperature was found to affect the biofilms, plus the AOC was important when the residual was between 0.6 and 2.0 mg $Cl_2/l$. An additional aspect of the current study was that the potential of the exoproteolytic activity (PEPA) technique was used along with a traditional so-called destructive technique in which the biofilm was scrapped off the coupon surface, resuspended, and cultivated on an R2A agar. Both techniques indicated similar trends and relative comparisons among the PDSs, yet the culturable biofilm values for the traditional method were several orders of magnitude lower than the PEPA values.

A Study on Cost Benefit Analysis Optimization Model for Water Distribution Network Rehabilitation Project of Taebaek Region (태백권 배수관망 개량사업의 비용효과분석 최적화 모델 연구)

  • Kim, Taegon;Choi, Taeho;Kim, Kyoungpil;Koo, Jayong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.3
    • /
    • pp.395-406
    • /
    • 2015
  • This research carried out an analysis on input cost and leakage reduction effect by leakage reduction method, focusing on the project for establishing an optimal water pipe network management system in the Taebaek region, which has been executed annually since 2009. Based on the result, optimal cost-benefit analysis models for water distribution network rehabilitation project were developed using DEA(data envelopment analysis) and multiple regression analysis, which have been widely utilized for efficiency analysis in public and other projects. DEA and multiple regression analysis were carried out by applying 4 analytical methods involving different ratios and costs. The result showed that the models involving the analytical methods 2 and 4 were of low significance (which therefore were excluded), and only the models involving the analytical methods 1 and 3 were suitable. From the result it was judged that the leakage management method to be executed with the highest priority for the improvement of revenue water ratio was installation of pressure reduction valve, followed by replacement of water distribution pipe, replacement of water supply pipe, and then leakage detection and repair; and that the execution of leakage management methods in this order would be most economical. In addition, replacement of water meter was also shown to be necessary in case there were a large number of defective water meters.

Reaction coefficient assessment and rechlorination optimization for chlorine residual equalization in water distribution networks (상수도 잔류염소농도 균등화를 위한 반응계수 추정 및 염소 재투입 최적화)

  • Jeong, Gimoon;Kang, Doosun;Hwang, Taemun
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.spc1
    • /
    • pp.1197-1210
    • /
    • 2022
  • Recently, users' complaints on drinking water quality are increasing according to emerging interest in the drinking water service issues such as pipe aging and various water quality accidents. In the case of drinking water quality complaints, not only the water pollution but also the inconvenience on the chlorine residual for disinfection are included, thus various efforts, such as rechlorination treatment, are being attempted in order to keep the chlorine concentration supplied evenly. In this research, for a more accurate water quality simulation of water distribution network, the water quality reaction coefficients were estimated, and an optimization method of chlorination/ rechlorination scheduling was proposed consideirng satisfaction of water quality standards and chlorine residual equalization. The proposed method was applied to a large-scale real water network, and various chlorination schemes were comparatively analyzed through the grid search algorithm and optimized based on the suitability and uniformity of supplied chlorine residual concentration.

Study on the alternatives to trace the origin and to diminish the sediments of drinking water (수돗물의 앙금발생규명 및 저감기술방안)

  • 김갑수;임병진;권은미
    • Journal of environmental and Sanitary engineering
    • /
    • v.9 no.1
    • /
    • pp.17-28
    • /
    • 1994
  • There are many possibilities that may lead to low quality of drinking water Recently, some unknown deposits in tap water raised a lot of public concern regarding the safety of drinking water in Seoul. We analyzed the quality of tap water from several areas of Seoul, including the area where public complaints about tap water were high. The results shows that the quality of tap water in Seoul was good, well below the environmental standards. Only the tap water from the area with high public complaints showed turbidity higher than that of other area. Also, result shows that component of deposit in tap water was Al, Fe, Mn, and Zn. Based on the research result we propose several measures that might help to reduce the amount of deposit in tap water as follows : 1 Using coagulant aid when coagulating or adjusting pH when filtering. 2. Replacing old water pipeline with new corrosive- resistant one. 3. Increasing water treatment efficiency by enhancing water treatment system such as automation of water treatment system adjusting production capacity, and improving operational condition of filler basin. 4. Chlorine disinfection at the distribution reservoir would help maintaining the same pH level and chlorine concentration throughout the water pipeline and reduce corrosion of pipe.

  • PDF

Effects of Diverse Water Pipe Materials on Bacterial Communities and Water Quality in the Annular Reactor

  • Jang, Hyun-Jung;Choi, Young-June;Ka, Jong-Ok
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.2
    • /
    • pp.115-123
    • /
    • 2011
  • To investigate the effects of pipe materials on biofilm accumulation and water quality, an annular reactor with the sample coupons of four pipe materials (steel, copper, stainless steel, and polyvinyl chloride) was operated under hydraulic conditions similar to a real plumbing system for 15 months. The bacterial concentrations were substantially increased in the steel and copper reactors with progression of corrosion, whereas those in stainless steel (STS) and polyvinyl chloride (PVC) reactors were affected mainly by water temperature. The heterotrophic plate count (HPC) of biofilms was about 100 times higher on steel pipe than other pipes throughout the experiment, with the STS pipe showing the lowest bacterial number at the end of the operation. Analysis of the 16S rDNA sequences of 176 cultivated isolates revealed that 66.5% was Proteobacteria and the others included unclassified bacteria, Actinobacteria, and Bacilli. Regardless of the pipe materials, Sphingomonas was the predominant species in all biofilms. PCR-DGGE analysis showed that steel pipe exhibited the highest bacterial diversity among the metallic pipes, and the DGGE profile of biofilm on PVC showed three additional bands not detected from the profiles of the metallic materials. Environmental scanning electron microscopy showed that corrosion level and biofilm accumulation were the least in the STS coupon. These results suggest that the STS pipe is the best material for plumbing systems in terms of the microbiological aspects of water quality.

Hydraulics and water quality characteristics of flushing in distribution pipes (배수관 플러싱의 수리적 현상과 배출수의 수질 특성)

  • Ahn, Jae-Chan;Lee, Su-Won;Baek, Kwang-In;Choi, Young-June;Choi, Jae-Ho;Jeong, Eui-Sun;Park, Hyeon;Koo, Ja-Yong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.1
    • /
    • pp.93-103
    • /
    • 2008
  • This study was conducted to optimize a unidirectional flushing program in distribution pipes by analysis of water pressure, velocity, quality, and other parameters during flushing. As a result, correlation coefficient between flushed pipe length and the flushing duration was obtained $R^2=0.83$ and the equation $Y_{Time}=0.0571{\cdot}X_{Pipe\;length}+4.7648$ for 10 pipes. The averaged flushing velocity in the pipes, 1.1 m/s, was enough to remove loose deposits on the inner wall of the pipes. 3 of 92 water samples taken during flushing met the National Drinking Water Quality Standard for Fe and Mn, but not for Al. Turbidity less than 1 NTU is suggested for the appropriate criteria to finish flushing in pipes. The coefficient of determination ($R^2$) between turbidity and TSS was 0.95 and the equation was induced as $Y_{TSS}=1.2068{\cdot}X_{Turbidity}$. The amount of removed deposits could be estimated from the turbidity data of discharged water in field because turbidity and TSS in the discharged water is highly correlated.

Occurrence and Distribution of Disinfection of By-Products in Drinking Water (수돗물중 소독부산물(DBPs)의 생성 및 분포특성에 관한 연구)

  • In, C.K.;Lee, J.H.;Lee, I.S.;Bang, E.O.;Song, H.S.;Yoon, S.J.
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2005.06a
    • /
    • pp.263-272
    • /
    • 2005
  • Chlorine disinfection has been used in drinking water supply to disinfect the water-borne microbial disease which may cause to serious human disease. it is still the least costly, relatively easy to use, Chlorination is the primary means to disinfect portable water supplies and control bacterial growth in the distribution system. However, chlorine reacts with natural organic matter(NOM), that presents in nearly all water sources, and then produces disinfection by-products(DBPs), that have adverse health effects. Although the existent DBPs have been reported in drinking water supplies, it is not feasible to predict the levels of the various DBPs due to the complex chemistry reaction involved. 1. The objectives of this study is to investigate seasonal variation difference concentration of DBPs in the plant to tap water. The average concentration of THMs was 20.04 ${\mu}g/{\ell}$ , HAAs 8-15 ${\mu}g/{\ell}$ , HANs 2-4.5 ${\mu}g/{\ell}$ respectively. 2. Distant variation of DBPs furmation by the distance is that THMs concentration increased by 17% at 2km point from the plant and by 28% at 7km and HAAs, HANs also increase each by 16%, 32% at 2 km from the plant and 35%, 56% at 7 km. DBPs increase in water supply pipe continually, 3. The seasonal occurrence of BBPs is that in May and August DBPs concentration is very higher than in march, in May DBPs concentration is highest. The temperature is main factor of DBPs formation, precursor also. 4. Precursor which was accumulated for winter flowed into the raw water by flooding in spring and summer and produced DBPs. 5. Therefore for the supply of secure drinking water, it is required to protect precursor of flowing into raw water and to add to BCAA and DBAA to drinking water standards.

  • PDF

Characteristic Analysis and Effect of Particulate Material in Drinking Water Distribution Networks (상수도관망에서 입자성 물질의 특성분석 및 영향조사)

  • Kim, Do-Hwan;Lee, Doo-Jin;Hwang, Jin-Su;Choi, Doo-Yong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.5
    • /
    • pp.312-320
    • /
    • 2013
  • Particulates in drinking water distribution system (DWDS) are mostly influenced by internal corrosion of metal pipes and sediment in pipelines due to the solution of this effect is limited. The particle size, component and properties of compounds for particulates in distributed water are different and the difference of these characteristics will be occurred by the kind of facilities, pipe condition, external factors and supply system etc. In this study, conducting the investigation of water quality in DWDS researches with particulates in the water. Monitoring sites were each water supply reservoir and the end of water supply area in DWDS. To collect particulate material at each sampling site, $47{\phi}$ glass microfiber filter type GF/C was performed using a filtration. Substances that the effect of the turbidity in the water according to particulate suspended solids and inorganic materials is due to the increasing particulates in the end of DWDS were increased. The result of compounds analysis by using X-ray diffraction (XRD) were Goethite (${\alpha}$-FeOOH), Magnetite ($Fe_3O_4$) in the end of DWDS and Quartz ($SiO_2$), Yeelimite ($Ca_4Al_6O_{12}SO_4$) at the effluent of waterworks and reservoirs. There were differences the compounds and sediments in the releasing or remaining water distribution facilities.

Study of Drinking water pipeline Corrosion Mechanism by using Scale Analysis (부식 생성물 분석법을 이용한 상수도 금속관의 부식거동에 관한 연구)

  • 황상용;송호봉
    • Journal of environmental and Sanitary engineering
    • /
    • v.17 no.1
    • /
    • pp.57-62
    • /
    • 2002
  • Carbon cast iron and Zinc coated steel were the most widely used portable water of supply and distribution Pipeline system. The leaching of red water in portable water could produce sericus environmental sanitary problems. Due to the red water was the most alternative to inner scale of metal pipeline. So this study was conducted the impact of red water on scale products, and was evaluated by the corrosive metal contaminants of 20 fears over. Surface tests, metal surface composition measurements of samples XRF, XRD, and SEM(EDS), analysis were used to investigate the corrosion characteristies of carbon cast iron and Zinc coated steel. As the contaminants of Fe increased the red water of carbon castiron pipe increased due to the scale products amount of $Fe_2O_3$ (Hemite).