• Title/Summary/Keyword: drain

Search Result 2,238, Processing Time 0.025 seconds

Performance Improvement of Amorphous In-Ga-Zn-O Thin-film Transistors Using Different Source/drain Electrode Materials (서로 다른 소스/드레인 전극물질을 이용한 비정질 In-Ga-Zn-O 박막트랜지스터 성능향상)

  • Kim, Seung-Tae;Cho, Won-Ju
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.2
    • /
    • pp.69-74
    • /
    • 2016
  • In this study, we proposed an a-IGZO (amorphous In-Ga-Zn-O) TFT (thin-film transistor) with off-planed source/drain structure. Furthermore, two different electrode materials (ITO and Ti) were applied to the source and drain contacts for performance improvement of a-IGZO TFTs. When the ITO with a large work-function and the Ti with a small work-function are applied to drain electrode and source contact, respectively, the electrical performances of a-IGZO TFTs were improved; an increased driving current, a decreased leakage current, a high on-off current ratio, and a reduced subthreshold swing. As a result of gate bias stress test at various temperatures, the off-planed S/D a-IGZO TFTs showed a degradation mechanism due to electron trapping and both devices with ITO-drain or Ti-drain electrode revealed an equivalent instability.

Simulation of 4H-SiC MESFET for High Power and High Frequency Response

  • Chattopadhyay, S.N.;Pandey, P.;Overton, C.B.;Krishnamoorthy, S.;Leong, S.K.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.8 no.3
    • /
    • pp.251-263
    • /
    • 2008
  • In this paper, we report an analytical modeling and 2-D Synopsys Sentaurus TCAD simulation of ion implanted silicon carbide MESFETs. The model has been developed to obtain the threshold voltage, drain-source current, intrinsic parameters such as, gate capacitance, drain-source resistance and transconductance considering different fabrication parameters such as ion dose, ion energy, ion range and annealing effect parameters. The model is useful in determining the ion implantation fabrication parameters from the optimization of the active implanted channel thickness for different ion doses resulting in the desired pinch off voltage needed for high drain current and high breakdown voltage. The drain current of approximately 10 A obtained from the analytical model agrees well with that of the Synopsys Sentaurus TCAD simulation and the breakdown voltage approximately 85 V obtained from the TCAD simulation agrees well with published experimental results. The gate-to-source capacitance and gate-to-drain capacitance, drain-source resistance and trans-conductance were studied to understand the device frequency response. Cut off and maximum frequencies of approximately 10 GHz and 29 GHz respectively were obtained from Sentaurus TCAD and verified by the Smith's chart.

Experimental Study on the Reduction of the Discharge Capacity of Vertical Drains (연직배수재의 통수능력 저감요인 분석을 위한 실험적 연구)

  • Kim, Chan-Kee;Chae, Young-Su;Lee, Kang-Il
    • Journal of the Korean Geosynthetics Society
    • /
    • v.4 no.3
    • /
    • pp.3-10
    • /
    • 2005
  • This paper aims at investigating the characteristics of discharge capacity according to lateral pressure, hydraulic gradient and deformation of drain materials. A series of experiments were conducted to achieve this objective. In experiments, fiver drain boards as well as harmonica and castle types of drain boards were installed in a rubber membrane, and clay in sully was filled around them. The test results showed that the harmonica type of drain boards have the greatest discharge capacity comparing to castle and fiber drain boards. The results also indicated that the hydraulic gradient has more effect on reduction of discharge capacity than the lateral pressure.

  • PDF

Composite Discharge Capacity Analysis of Vertical Drain Installed in Ground (연직배수재가 타설된 지반의 복합통수능 해석)

  • Kim, Chang-Young;Kwak, No-Kyung;Lee, Song
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1167-1174
    • /
    • 2008
  • Vertical drain method, which is one of the soft ground improvement methods, shorten s drain path to accelerate consolidation process and is applied in many sites. At a recent, composite discharge capacity experiment that analyze discharge amount by consolidation behavior with overburden pressure of soft ground in laboratory, simulates similarly with actuality. Geotechnical engineering problems such a s soft ground improvement are solved by numerical analysis by development of computer and numerical analysis techniques. Numerical analysis does that result is contrary by user's inexperience for choice of constitution model and application of analysis method. Therefore, this thesis experiments on composite discharge capacity test and study discharge capacity of drain and consolidation behavior of soft ground installed prefabricated vertical drain boards. Also, This thesis studied reasonable input parameters and constitution model by compare results of composite discharge capacity test and numerical analysis using PLAXIS that is 2D finial element numerical analysis program.

  • PDF

An Experimental Study on Reducing Condensation in Marine Air Compressors

  • Kim, Bu-Gi;Kim, Hong-Ryeol;Yang, Chang-Jo;Kim, Jun-Ho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.3
    • /
    • pp.303-308
    • /
    • 2015
  • Compressed air has many uses on board ship, ranging from diesel engine starting to the cleaning of machinery during maintenance. In an effort to enhance the performance of the marine compressed air system, this work studied a way to reduce condensation from the air compressor via experiments. Especially more condensation is produced when the temperature at compressor outlets and the humidity of the air are higher. so in the research, drain production change has been observed by additionally installing the cooling fan on the suction portion of the air to air compressor and this is the method for reducing the compressed air drain that has passed through the compressor. For the result, it was verified that when the cooling fan was used, less drain was made where per hour it was 500.9ml of drain and the measured result after installing the cooling fan was that less drain was made. Other additional and various researches are needed including experiments like silica gel passing through the suction portion afterwards.

An Analysis about Inundation and Carrying Capacity of Drain Pipes in Urban Area (도시유역의 우수관거 통수능 및 침수특성 분석)

  • Lee, Jung-Ho;Jo, Duk-Jun;Kim, Joong-Hoon;Kim, Eung-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.1
    • /
    • pp.110-115
    • /
    • 2007
  • The localized rainfall happens frequently in urban areas recently and then, he drain pipes of urban areas do not drain well when the localized rainfalls happen. Specially, the inundation by the backwater on the lowland should be solved certainly in urban planning and sewer rehabilitation. In this study, it was examined whether the carrying capacities of the drain pipe are satisfied about a current design standard of the rainfall considering the outflows of the urban areas by the rainfall analysis. Also, the backwater in the drain pipe and the inundation on the lowland were analyzed considering the water level of the discharged river and the propriety of the design standard was examined by the analysis about the rainfall frequency. Also, the results offered the basic data to decide whether the detention reservoir should be established and the scale of the pump station.

  • PDF

A Case Study on the Application of Gravel Pile in Soft Ground (Gravel Pile의 현장적용을 위한 시험시공 사례연구)

  • 천병식;고용일;여유현;김백영;최현석
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.02a
    • /
    • pp.32-41
    • /
    • 2000
  • Sand drain as a vertical drainage is widely used in soft ground improvement Recently, sand, the principal source of sand drain, is running out. The laboratory model tests were carried out to utilize gravel as a substitute for sand. Though which the characteristics of gravel are compared to those of sand for engineering purpose. Two cylindrical containers for the model test were filled with marine clayey soil from the west coast of Korea with a column in the center, one with sand, the other with gravel. Vibrating wire type piezometers were installed at the distance of 1.0D, 1.5D and 2.0D from the center of the column. The characteristics of consolidation were studied with data obtained from the measuring instrument place on the surface of the container. The parameter study was performed on the marine clayey soil before and after the test in order to verify the effectiveness of the improvement. The clogging effect was checked at various depth in gravel column after the test. In-situ tests area was divided into two areas by material used. One is Sand Drain(SD) and Sand Compaction Pile(SCP) area, the other is Gravel Drain(GD) and Gravel Compaction Pile(GCP) area. Both areas were monitored to obtain the information on settlement, pore water pressure and bearing capacity by measuring instruments for stage loading caused by embankment. The results of measurements were analyzed. According to the test results, the settlement was found to be smaller in gravel drain than in sand drain. The increase in bearing capacity by gravel pile explains the result. The clogging effect was not found in gravel column. It is assumed that gravel is relatively acceptable as a drainage material. Gravel is considered to be a better material than sand for bearing capacity, and it is found that bearing capacity is larger when gravel is used as a gravel compaction pile than as a gravel drain.

  • PDF

Analysis on Consolidation Behavior of Soft Ground with Reactive Drain Pile (반응성 배수파일이 타설된 지반의 압밀거동 분석)

  • Kim, Beomjun;Oh, Myounghak;Yune, Chanyoung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.1
    • /
    • pp.13-23
    • /
    • 2014
  • Geotechnical evaluation on the reactive drain pile which can achieve simultaneously both the soft ground improvement and the remediation of contaminated pore water in reclamation site was performed. Applicability of steel-making slag used as a inside reactive material was confirmed. To investigate the consolidation characteristics of the soft ground improved by reactive drain pile, testing devices to form and install the reactive drain pile were developed and laboratory tests were performed according to the existence of outside sand drain and the length of impermeable barrier. Test results showed that the consolidation time was decreased as the shortening of impermeable barrier. However, the effect of outside sand drain on consolidation time was dominant compared with the length of impermeable barrier.

Characteristics of Behavior of Brain Board - driven Clay Layers by Vacuum Loading (진공하중에 의한 Drain Board 타입 점토지반의 거동 특성)

  • Lee, Song;Yang, Tae-Seon;Park, Jong-Chan;Paik, Young-Shik
    • Geotechnical Engineering
    • /
    • v.9 no.1
    • /
    • pp.45-58
    • /
    • 1993
  • Paper drain method is one of the methods used for the improvement of soft clay as hydraulic fill sites or the seaside industrial complex. This method adopts a card board as the drain materials instead of sand piles in sand drain method. In this paper 3 types of drain board are used to fond out the characteristics of consolidation by vacuum consolidation model test. So does the no drain board test. This test causes the reduction of pore water pressure to promote the settlement without change of ground water level. Conclusively, the vacuum consolidation shows 3-dimensional behaviors and pore water pressure reaches a negative value in a short time. In addition, it is expected to have a comparatively good consolidation effect using non -woven board, and vacuum loading results in increasing the shear strength at the bottom and top of call layers.

  • PDF

A Behavior Ana1ysis of Clayey Foundation Improved with Pack Drain (Pack-Drain으로 개량된 점토지반의 거동해석)

  • 오재화;남기현;이문수;허재은;김영남
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.1
    • /
    • pp.116-127
    • /
    • 1996
  • This paper dealt with FEM analysis of foundation improved with pack drain. The theory on pack drain was scrutinized and observed values in the field were compared with numerical results. Work site of Kwangyang container pier was selected as a ease study in which measurement of settlement and pore water pressure was accurately carried out. Biot's consolidation equation was selected as governing One, coupled with modified Camclay model as constitutive one. Christian and Boehmer's numerical technique was adopted. Behavior of foundation with pack drain is not simple but very complicated. Discontinuity resulted from rigidity difference between adjacent materials, smear effect and complicated boundary conditions should be considered in the behavior analysis of foundation behavior. The results of numerical analysis were influenced by smear zone. In relevant to this effect, finite element analysis was carried out using the reduced horizontal coefficient of permeability in the smear zone; The numerical results were compared with observed values in surface settlement. including pore water pressure. However only lateral di5plaoement by numerical ana1Ysis was shown since its measurement was not performed in the field. The predication of settlement to be developed later can be effectively employed for the obtimization of construction. The predication of residual settlement using the data measured in the field was made by Hoshino, Asaoka and hyperbolic method. Among them, the hyperbolic method proved best one. Settlements accorded well between numsrical and observed values while pore pressure showed a slight difference. Lateral displacement showed largest values at constant distance from ground surface. The validation of foundation analysis improved with pack drain by computer program employed in this study selecting modified Cam-clay model was satisfactorily secured.

  • PDF