• 제목/요약/키워드: down-regulation

검색결과 1,254건 처리시간 0.028초

6-Methoxyluteolin from Chrysanthemum zawadskii var. latilobum Suppresses Histamine Release and Calcium Influx via Down-Regulation of $Fc{\varepsilon}RI$ ${\alpha}$ Chain Expression

  • Shim, Sun-Yup;Park, Jeong-Ro;Byun, Dae-Seok
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권5호
    • /
    • pp.622-627
    • /
    • 2012
  • Mast cells and basophils are important effector cells in immunoglobulin-E (IgE)-mediated allergic reactions. Using the human basophilic KU812F cells, we assessed the inhibitory effects of 6-methoxyluteolin, isolated from Chrysanthemum zawadskii, in the $Fc{\varepsilon}RI$-mediated allergic reaction. We determined that 6-methoxyluteolin inhibited anti-$Fc{\varepsilon}RI$ ${\alpha}$ chain antibody (CRA-1)-induced histamine release, as well as elevation of intracellular calcium concentration $[Ca^{2+}]_i$ in a dose-dependent manner. Moreover, the inhibitory effects of 6-methoxyluteolin on the cell surface expression and the mRNA level of the $Fc{\varepsilon}RI$ ${\alpha}$ chain were determined by flow cytometric analysis and reverse transcription-polymerase chain reaction (RT-PCR), respectively. Therefore, these results show that 6-methoxyluteolin is a potent inhibitor of histamine release and calcium influx via down-regulation of the $Fc{\varepsilon}RI$ ${\alpha}$ chain.

Repressed Quorum Sensing by Overexpressing LsrR Hampers Salmonella Evasion from Oxidative Killing Within Macrophages

  • Choi, Jeong-Joon;Park, Joo-Won;Ryu, Sang-Ryeol
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권12호
    • /
    • pp.1624-1629
    • /
    • 2010
  • Bacterial cell-to-cell communication, termed quorum sensing (QS), leads to coordinated group behavior in a cell-density-dependent fashion and controls a variety of physiological processes including virulence gene expression. The repressor of the lsr operon, LsrR, is the only known regulator of LuxS/AI-2-mediated QS in Salmonella. Although lack of lsrR did not result in noticeable differences in Salmonella survival, the down-regulation of QS as a result of lsrR overexpression decreased Salmonella survival within macrophages. We found that impaired growth of Salmonella overexpressing lsrR within macrophages was due largely to its hypersensitivity to NADPH-dependent oxidative stress. This, in turn, was a result of decreased expression of genes involved in the oxidative stress response, such as sodA, sodCI, and sodCII, when lsrR was overexpressed. These results suggest that down-regulation of QS by excess LsrR can lower Salmonella virulence by hampering Salmonella evasion from oxidative killing within macrophages.

Esculetin이 PI3K/MAPK 경로 하향 조절을 통해 collagen 유도의 혈소판 응집 억제에 미치는 효과 (Inhibitory Effects of Esculetin Through the Down-Regulation of PI3K/MAPK Pathway on Collagen-Induced Platelets Aggregation)

  • 박창은;이동하
    • 생약학회지
    • /
    • 제52권3호
    • /
    • pp.127-133
    • /
    • 2021
  • Platelet activation plays a major role in cardiovascular disorders (CVDs). Thus, disrupting platelet activation represents an attractive therapeutic target on CVDs. Esculetin, a bioactive 6,7-dihydroxy derivative of coumarin, possesses pharmacological activities against obesity, diabetes, renal failure, and CVDs. In other report, the effect of esculetin has been examined in human platelet activation and experimental mouse models, and esculetin inhibited collagen- and arachidonic acid-induced platelet aggregation in washed human platelets. However, it had no effects on other agonists such as thrombin and U46619, and its mechanism is not also clearly known. This study investigated the effect of esculetin on collagen-induced human platelet aggregation, and we clarified the mechanism. Esuletin has effects on the down regulation of PI3K/Akt and MAPK, phosphoproteins that act in the signaling process in platelet aggregation. The effects of esculetin reduced of TXA2 production and phospholipase A2 activation, and intracellular granule secretion including ATP and serotonin, leading to inhibit platelet aggregation. These results clearly clarified the effect of esculetin in inhibiting platelet activity and thrombus formation in humans.

Hypermethylation-mediated silencing of NDRG4 promotes pancreatic ductal adenocarcinoma by regulating mitochondrial function

  • Shi, Hao-Hong;Liu, Hai-E;Luo, Xing-Jing
    • BMB Reports
    • /
    • 제53권12호
    • /
    • pp.658-663
    • /
    • 2020
  • The N-myc downstream regulated gene (NDRG) family members are dysregulated in several tumors. Functionally, NDRGs play an important role in the malignant progression of cancer cells. However, little is known about the potential implications of NDRG4 in pancreatic ductal adenocarcinoma (PDAC). The aim of the current study was to elucidate the expression pattern of NDRG4 in PDAC and evaluate its potential cellular biological effects. Here, we firstly report that epigenetic-mediated silencing of NDRG4 promotes PDAC by regulating mitochondrial function. Data mining demonstrated that NDRG4 was significantly down-regulated in PDAC tissues and cells. PDAC patients with low NDRG4 expression showed poor prognosis. Epigenetic regulation by DNA methylation was closely associated with NDRG4 down-regulation. NDRG4 overexpression dramatically suppressed PDAC cell growth and metastasis. Further functional analysis demonstrated that up-regulated NDRG4 in SW1990 and Canpan1 cells resulted in attenuated mitochondrial function, including reduced ATP production, decreased mitochondrial membrane potential, and increased fragmented mitochondria. However, opposite results were obtained for HPNE cells with NDRG4 knockdown. These results indicate that hypermethylation-driven silencing of NDRG4 can promote PDAC by regulating mitochondrial function and that NDRG4 could be as a potential biomarker for PDAC patients.

Hydroxyzine Induces Cell Death in Triple-Negative Breast Cancer Cells via Mitochondrial Superoxide and Modulation of Jak2/STAT3 Signaling

  • Shakya, Rajina;Park, Gyu Hwan;Joo, Sang Hoon;Shim, Jung-Hyun;Choi, Joon-Seok
    • Biomolecules & Therapeutics
    • /
    • 제30권6호
    • /
    • pp.585-592
    • /
    • 2022
  • Treatment of triple-negative breast cancer (TNBC) has been limited due to the lack of molecular targets. In this study, we evaluated the cytotoxicity of hydroxyzine, a histamine H1 receptor antagonist in human triple-negative breast cancer BT-20 and HCC-70 cells. Hydroxyzine inhibited the growth of cells in dose- and time-dependent manners. The annexin V/propidium iodide double staining assay showed that hydroxyzine induced apoptosis. The hydroxyzine-induced apoptosis was accompanied down-regulation of cyclins and CDKs, as well as the generation of reactive oxygen species (ROS) without cell cycle arrest. The effect of hydroxyzine on the induction of ROS and apoptosis on TNBC cells was prevented by pre-treatment with ROS scavengers, N-acetyl cysteine or Mito-TEMPO, a mitochondria-targeted antioxidant, indicating that an increase in the generation of ROS mediated the apoptosis induced by hydroxyzine. Western blot analysis showed that hydroxyzine-induced apoptosis was through down-regulation of the phosphorylation of JAK2 and STAT3 by hydroxyzine treatment. In addition, hydroxyzine induced the phosphorylation of JNK and p38 MAPK. Our results indicate that hydroxyzine induced apoptosis via mitochondrial superoxide generation and the suppression of JAK2/STAT3 signaling.

Domperidone Exerts Antitumor Activity in Triple-Negative Breast Cancer Cells by Modulating Reactive Oxygen Species and JAK/STAT3 Signaling

  • Rajina Shakya;Mi Ran Byun;Sang Hoon Joo;Kyung-Soo Chun;Joon-Seok Choi
    • Biomolecules & Therapeutics
    • /
    • 제31권6호
    • /
    • pp.692-699
    • /
    • 2023
  • The lack of molecular targets hampers the treatment of triple-negative breast cancer (TNBC). In this study, we determined the cytotoxicity of domperidone, a dopamine D2 receptor (DRD2) antagonist in human TNBC BT-549 and CAL-51 cells. Domperidone inhibited cell growth in a dose- and time-dependent manner. The annexin V/propidium iodide staining showed that domperidone induced apoptosis. The domperidone-induced apoptosis was accompanied by the generation of mitochondrial superoxide and the down-regulation of cyclins and CDKs. The apoptotic effect of domperidone on TNBC cells was prevented by pre-treatment with Mito-TEMPO, a mitochondria-specific antioxidant. The prevention of apoptosis with Mito-TEMPO even at concentrations as low as 100 nM, implies that the generation of mitochondrial ROS mediated the domperidone-induced apoptosis. Immunoblot analysis showed that domperidone-induced apoptosis occurred through the down-regulation of the phosphorylation of JAK2 and STAT3. Moreover, domperidone downregulated the levels of D2-like dopamine receptors including DRD2, regardless of their mRNA levels. Our results support further development of DRD2 antagonists as potential therapeutic strategy treating TNBC.

청소년 인터넷규제 개선방향에 대한 제언: 주요국의 청소년 인터넷규제를 중심으로 (Suggestions for Improvement of Youth Internet Regulation: Focusing on Youth Internet Regulation of the Major Country)

  • 송은지
    • 한국콘텐츠학회논문지
    • /
    • 제13권11호
    • /
    • pp.690-698
    • /
    • 2013
  • 발전된 디지털 환경은 생활 편의성 향상 측면에서 상당한 이점을 가져다주고 있지만, 무분별한 정보의 접근은 오히려 새로운 사회 문제를 발생시키고 있다. 특히 청소년이나 어린이 인터넷 이용 인구의 증가로 인터넷 상의 유해 정보로부터 야기되는 부정적인 영향에 대한 우려가 높아짐에 따라, 국제 사회에서는 인터넷 상의 청소년 및 어린이 보호를 위한 정책 마련과 각종 활동의 중요성이 강조되고 있다. 본고에서는 이와 같은 추세를 반영해 해외 주요 국가의 청소년 보호를 위한 인터넷 규제 및 운영 현황을 살펴보고 향후 국내에서 청소년 보호를 위한 인터넷 환경 강화에 필요한 요건을 도출해본다. 주요 국가들은 민간단체들과 긴밀한 협력 구조 구축과 캠페인, 지속적인 교육 등을 통해 자율적인 규제를 유도하며 직접적인 규제를 최소화 하고 있음에도 불구하고, 한국은 인터넷 게임 셧다운제와 같은 직접적이고 강압적인 규제를 시행하고 있으며 사회 인프라 조성 활동도 미흡한 것으로 분석되었다. 따라서, 바람직한 인터넷 환경을 조성하기 위해서는 민간 전문가 및 민간단체 등의 협력 증진과 간접적 규제 기반 조성으로 자율적인 규제를 지향하는 것이 필요하다.

Cdk inhibitors의 발현 증가 및 pRB 인산화 저해에 의한 HDAC inhibitor인 sodium butyrate에 의한 인체백혈병세포의 G1 arrest유발 (G1 Arrest of U937 Human Monocytic Leukemia Cells by Sodium Butyrate, an HDAC Inhibitor, Via Induction of Cdk Inhibitors and Down-regulation of pRB Phosphorylation)

  • 최영현
    • 생명과학회지
    • /
    • 제19권7호
    • /
    • pp.871-877
    • /
    • 2009
  • 대표적인 histone deacetylase inhibitor 저해제의 일종일 sodium butyrate에 의한 인체백혈병 U937세포의 증식 억제에 관한 기전 연구를 세포주기 조절 측면에서 조사하였다. MTT assay 및 flow cytometry 분석을 통하여 sodium butyrate의 처리 농도 증가에 따른 U937 세포의 증식억제는 세포주기 G1 arrest 및 apoptosis 유발에 의한 것임을 확인하였다. RT-PCR및 Western blotting 결과에서 sodium butrate에 의한 G1 arrest는 세포주기 G1기에서 S기로의 진입에 중요한 역할을 하는 cyclin D1, E, A, cyclin-dependent kinase (Cdk) 4 및 Cdk6발현의 저해와 p21 및 p27과 같은 Cdk inhibitor의 발현 증가와 연관성이 있었다. Sodium butyrate는 또한 retinoblastoma protein (pRB)및 p130 단백질의 인산화를 저해시켰으나, S기 진행에 중요한 전사조절인자인 E2F-1 및 E2F-4의 의 발현에는 큰 영향이 없었다. 그러나 sodium butyrate에 의한 pRB 및 p130단백질의 인산화 저해는 pRB와 E2F-1및 p130과 E2F-4와의 결합력을 증사시켰다. 본 연구의 결과는 U937세포의 증식억제에 pRB/p130 인산화 억제 및 Cdk inhibitors의 발현 증가가 중요한 역할을 하고있음을 보여주는 것으로, sodium butyrate의 항암기전 이해에 중요한 자료가 될 것이다.

DAPT 및 MHY2245의 비스테로이드소염제(NSAID)의 항암 활성 증강 및 종양줄기세포관련 표지자 발현 감소 활성에 대한 분자적 기전 (Enhancing the Anti-cancer Activity of Non-steroidal Anti-inflammatory Drug and Down-regulation of Cancer Stemness-related Markers in Human Cancer Cells by DAPT and MHY2245)

  • 문현정;강치덕;김선희
    • 생명과학회지
    • /
    • 제32권3호
    • /
    • pp.210-221
    • /
    • 2022
  • 비스테로이드소염제(NSAID)와 γ-secretase 저해제(DAPT) 또는 SIRT1저해제(MHY2245)의 병용 효과를 인간 대장암(KM12) 및 간암(SNU475) 세포를 대상으로 조사한 결과, celecoxib (CCB) 및 2, 5-dimethyl celecoxib (DMC)를 포함하는 NSAID는 DAPT 또는 MHY2245와의 병용에 의하여 COX-2활성과 상관없이 NSAID의 암세포 증식 억제능이 현저히 증강되었다. DAPT와 MHY2245는 p62단백질 감소와 동시에 Notch1, CD44, CD133, octamer- binding transcription factor 4 (Oct4) 등의 다수의 종양 줄기세포 표지자 및 NICD1 발현 양을 감소시켰지만, activating transcription factor 4 (ATF4) 발현은 증강시켰다. 또한 NSAID 단독처리 보다 NSAID/DAPT 및 NSAID/MHY2245 병용 처리에 의하여 오토파지가 촉진되므로서 종양 줄기세포 표지자의 발현 및 단백질양의 감소가 가속화되고, 이에 따라 PARP 활성화 및 세포사멸이 현저히 증강 되었다. 결론적으로 NSAID/DAPT 및 NSAID/MHY2245의 병용 투여는 종양 줄기세포 표지자를 발현하는 인간 암세포의 증식 억제 및 제거에 효과적인 처리방법으로, 임상에 적용시킬 수 있는 학문적 근거로서 제공 될 수 있다.

UHRF1 Induces Methylation of the TXNIP Promoter and Down-Regulates Gene Expression in Cervical Cancer

  • Kim, Min Jun;Lee, Han Ju;Choi, Mee Young;Kang, Sang Soo;Kim, Yoon Sook;Shin, Jeong Kyu;Choi, Wan Sung
    • Molecules and Cells
    • /
    • 제44권3호
    • /
    • pp.146-159
    • /
    • 2021
  • DNA methylation, and consequent down-regulation, of tumour suppressor genes occurs in response to epigenetic stimuli during cancer development. Similarly, human oncoviruses, including human papillomavirus (HPV), up-regulate and augment DNA methyltransferase (DNMT) and histone deacetylase (HDAC) activities, thereby decreasing tumour suppressor genes (TSGs) expression. Ubiquitin-like containing PHD and RING finger domain 1 (UHRF1), an epigenetic regulator of DNA methylation, is overexpressed in HPV-induced cervical cancers. Here, we investigated the role of UHRF1 in cervical cancer by knocking down its expression in HeLa cells using lentiviral-encoded short hairpin (sh)RNA and performing cDNA microarrays. We detected significantly elevated expression of thioredoxin-interacting protein (TXNIP), a known TSG, in UHRF1-knockdown cells, and this gene is hypermethylated in cervical cancer tissue and cell lines, as indicated by whole-genome methylation analysis. Up-regulation of UHRF1 and decreased TXNIP were further detected in cervical cancer by western blot and immunohistochemistry and confirmed by Oncomine database analysis. Using chromatin immunoprecipitation, we identified the inverted CCAAT domain-containing UHRF1-binding site in the TXNIP promoter and demonstrated UHRF1 knockdown decreases UHRF1 promoter binding and enhances TXNIP expression through demethylation of this region. TXNIP promoter CpG methylation was further confirmed in cervical cancer tissue by pyrosequencing and methylation-specific polymerase chain reaction. Critically, down-regulation of UHRF1 by siRNA or UHRF1 antagonist (thymoquinone) induces cell cycle arrest and apoptosis, and ubiquitin-specific protease 7 (USP7), which stabilises and promotes UHRF1 function, is increased by HPV viral protein E6/E7 overexpression. These results indicate HPV might induce carcinogenesis through UHRF1-mediated TXNIP promoter methylation, thus suggesting a possible link between CpG methylation and cervical cancer.